Humidity and Dew-Point Measurement and Calibration
Humidity and Dew-Point Instruments

Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.

www.michell.com

Michell's instruments have been successfully applied in the following markets:

- Compressed Air Dryers
- Pharmaceutical
- Standards Laboratories and Metrology
- Semiconductors
- Natural Gas and Petrochemicals
- Industrial and Pure Gas Production
- Power Generation
- Metalurgy
- ... and many more

Product Ranges

Dew-Point Transmitters
Michell offers the widest range of dew-point sensors and transmitters on the market. From the industry standard Easidew 2-wire transmitter to the new, rugged Easidew PRO IS for hazardous areas, all are supplied with sensors traceable to national standards.

Portable Instruments
Michell's range of easy-to-operate portable instruments provides fast, accurate and stable measurement of dew point, relative humidity and moisture concentration. They are designed to satisfy the most demanding industrial conditions, and are unique in the market for giving repeatedly fast response to low dew points.

Chilled Mirror Instruments
Chilled Mirror is a fundamental measuring technology offering the user exceptionally accurate, reliable and repeatable measurements from trace moisture to high humidity. Michell offers a range of instruments based on a rugged sensor design that is equally suitable for installation in demanding process environments or for use as an accurate reference instrument in a National Standards Laboratory.

Calibration Instruments
Michell has a wide offering of calibration equipment for the verification of trace moisture, dew-point and relative humidity sensors. A modular concept means that Michell's engineers can build for you a customized calibration solution that meets your exact needs. Components may include air compressor and dryer; low range or high range humidity generator; simple sensor housing or environmentally controlled test chamber and finally, verification using a traceable Michell Chilled Mirror Hygrometer.

Process Analyzers
Michell's range of analyzers is specifically designed to provide reliable on-line measurement in process applications such as dedicated water and hydrocarbon dew-point determination in natural gas. Three sensing technologies are used: the Ceramic Impedance sensor for measurements in gas and liquid phase; Quartz Crystal Microbalance for trace moisture in process gases and the Dark Spot Chilled Mirror for hydrocarbon dew point.

Oxygen Analyzers
Michell brings you the very latest technologies in oxygen measurement, designed to give years of reliable and accurate service in laboratory, process and flue gas applications. From instruments featuring a unique sealed-reference zirconia sensor to a transmitter with the latest generation thermo-paramagnetic oxygen technology, all Michell Oxygen Analyzers are available in a range of different configurations.

Relative Humidity Instruments
Michell's own RH sensing technology provides excellent resolution, long term stability and speed of response. We offer a wide range of humidity and temperature measuring sensors and instruments, including relative humidity transmitters, humidity and temperature transmitters as well as handheld indicators. The humidity generator range includes the most stable humidity generator on the market.
Accreditations

UKAS
At Michell Instruments we understand and endorse the need to conform to recognized standards for quality and calibration. Our calibration laboratory maintains full traceability to British (NPL) and American (NIST) Humidity Standards.

Michell Instruments Limited has been accredited to UKAS (United Kingdom Accreditation Service) for the calibration of dew-point hygrometers since 1986 (laboratory number 0179) and our current dew-point calibration range is -90 to +90°C (-130 to +194°F). For full details of our measurement capability please see our Schedule of Accreditation. Our traceability to NIST (National Institute of Standards & Technology) is over the range -75 to +20°C (-103 to +68°F).

As a result of the European Accreditation (EA), our UKAS accreditation carries equal validity in any country which is a member of the EA.

NVLAP
Michell’s UKAS accreditation is commonly recognized in the USA as equivalent to NVLAP (National Voluntary Laboratory Accreditation Program).

ISO 9001:2008
Michell Instruments Limited has been awarded registration to BS EN ISO 9001:2008.

These prestigious accreditations and registration give Michell Instruments Limited a unique position within the field of hygrometry - independently audited and commended by National Bodies on both quality and calibration.

HAZARDOUS AREA PRODUCTS
Michell Instruments Limited produces (besides its extensive RH range), products specifically designed for use within hazardous areas or locations. These products use various methods of protection to impart the safety level required. All such products are independently assessed and certified to many international standards, including, but not limited to, ATEX (European), IECEx, CSA, FM, UL, GOSK-R and GOST-K.

Accreditations and certificates for these products can be downloaded from the Michell website (www.michell.com) under the Product Documents/Accreditations section.

The installation and use of products approved for use in hazardous areas or locations must only be carried out by suitably trained personnel, and in accordance with the latest national standards currently in use in that region.
Established in 1974, the Michell Instruments Group of Companies brings more than 35 years of research, design and state-of-the-art technology to the world of moisture measurement and control. The current products include:

Products

- dew-point transmitters
- chilled mirror hygrometers
- relative humidity (RH) sensors
- process moisture analyzers
- hydrocarbon dew-point analyzers
- moisture in liquid analyzers
- oxygen analyzers

Technology Centers

Michell’s Technology Center of Excellence is in Ely, UK, where many research projects are carried out in association with world-famous, and nearby, Cambridge University. Other R&D facilities are based in Oosterhout, The Netherlands and Lyon, France.

Manufacturing

Michell Instruments has three manufacturing locations: Oosterhout, The Netherlands; Lyon, France and Ely UK (the main certified (BS EN ISO 9001:2008) manufacturing facility). This UK location also boasts UKAS accreditation, NIST and NPL, certified calibration traceability, and many other worldwide approvals including ATEX, FM, UL, CSA and many more.

Service and Support

Michell prides itself with an extensive network of factory trained application engineers, subsidiaries and distributors stretching across 56 countries. Service centers and calibration laboratories are located on three continents - North America, Europe and Asia. The company, always aware of the importance of after-sales, offers field support and exchange programs to maintain continuous operation at its customers’ facilities.

Applications

High-precision capacitive moisture transmitters help customers to measure trace moisture in their process applications and are the No. 1 choice for manufacturers of drying systems worldwide. Relative Humidity transmitters and temperature sensors are widely used in HVAC applications, weather stations, pharmaceutical storage and many other processes where controlled environmental conditions are crucial.

Companies around the world save thousands of euros using Michell’s humidity calibration systems, incorporating the Michell reference chilled mirror dew-point hygrometers. The calibration of portable hygrometers and relative humidity instruments in-house, reduces down-time and cuts expense.

Michell offers the high-speed measurement of oxygen in a range of applications, including combustion optimization for power stations, controlling levels of CO₂ for breweries, and clean-gas processes, such as silicon wafer production and pure gas generation.

Users in the natural gas industry and power plants save millions of euros in repairs and down-time by using the Condumax II hydrocarbon dew-point analyzers. These instruments ensure transmission of natural gas quality at custody transfer and also prevent gas burner failure and prolong the life of process equipment.

Other analyzers for moisture in hydrocarbon liquids are available in explosion proof, intrinsically safe, as well as laboratory versions, and allow the continuous measurement of the moisture content in a wide range of hydrocarbon liquids, including transformer oil, hydraulic oil, petrochemical fractions and pure hydrocarbons.
Contents

- **Accreditations** ..2
- **Michell Instruments** ..3
- **Contents** ...4
- **Product Guide** ..5

<table>
<thead>
<tr>
<th>Model</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCMini52</td>
<td>9</td>
</tr>
<tr>
<td>Digital Relative Humidity and Temperature Mini Probe w/Analog Output</td>
<td></td>
</tr>
<tr>
<td>PCMini70</td>
<td>11</td>
</tr>
<tr>
<td>Relative Humidity and Temperature Mini Probe</td>
<td></td>
</tr>
<tr>
<td>PC33 & 52</td>
<td>13</td>
</tr>
<tr>
<td>Analog Relative Humidity and Temperature Probe</td>
<td></td>
</tr>
<tr>
<td>PC62 & 62V</td>
<td>15</td>
</tr>
<tr>
<td>Digital Relative Humidity & Temperature Probe with Digital or Analog Output</td>
<td></td>
</tr>
<tr>
<td>PFMi72</td>
<td>17</td>
</tr>
<tr>
<td>Relative Humidity and Temperature Probe</td>
<td></td>
</tr>
<tr>
<td>PF211</td>
<td>19</td>
</tr>
<tr>
<td>HVAC Relative Humidity Probe</td>
<td></td>
</tr>
<tr>
<td>SF52</td>
<td>21</td>
</tr>
<tr>
<td>Dew-Point Transmitter</td>
<td></td>
</tr>
<tr>
<td>Easidew Transmitter</td>
<td>23</td>
</tr>
<tr>
<td>2-Wire Dew-Point Transmitter</td>
<td></td>
</tr>
<tr>
<td>Easidew TX I.S.</td>
<td>25</td>
</tr>
<tr>
<td>ATEX, FM/CSA Certified Dew-Point Transmitter</td>
<td></td>
</tr>
<tr>
<td>Easidew PRO I.S.</td>
<td>27</td>
</tr>
<tr>
<td>Intrinsically Safe Dew-Point Transmitter</td>
<td></td>
</tr>
<tr>
<td>Easidew Online</td>
<td>29</td>
</tr>
<tr>
<td>Dew-Point Hygrometer</td>
<td></td>
</tr>
<tr>
<td>MDM25</td>
<td>31</td>
</tr>
<tr>
<td>Hand-Held Dew-Point Hygrometer</td>
<td></td>
</tr>
<tr>
<td>MDM300</td>
<td>33</td>
</tr>
<tr>
<td>Advanced Dew-Point Hygrometer</td>
<td></td>
</tr>
<tr>
<td>RM33 & 52</td>
<td>35</td>
</tr>
<tr>
<td>Relative Humidity and Temperature Transmitter, HVAC Room Monitor</td>
<td></td>
</tr>
<tr>
<td>WM33 & 52</td>
<td>37</td>
</tr>
<tr>
<td>Relative Humidity and Temperature Transmitter, Wall Mount</td>
<td></td>
</tr>
<tr>
<td>WM261</td>
<td>39</td>
</tr>
<tr>
<td>Digital Relative Humidity & Temperature Transmitter, Wall Mount</td>
<td></td>
</tr>
<tr>
<td>WM281</td>
<td>41</td>
</tr>
<tr>
<td>Digital Relative Humidity & Temperature Transmitter, Wall Mount</td>
<td></td>
</tr>
<tr>
<td>WM291</td>
<td>43</td>
</tr>
<tr>
<td>Digital Relative Humidity & Temperature Transmitter, Wall Mount</td>
<td></td>
</tr>
<tr>
<td>DT269</td>
<td>45</td>
</tr>
<tr>
<td>Digital Relative Humidity & Temperature Transmitter, Duct Mount</td>
<td></td>
</tr>
<tr>
<td>DT722</td>
<td>47</td>
</tr>
<tr>
<td>Rugged Industrial Relative Humidity and Temperature Transmitter, Duct Mount</td>
<td></td>
</tr>
<tr>
<td>DT282</td>
<td>49</td>
</tr>
<tr>
<td>Digital Relative Humidity and Temperature Transmitter - Duct Mount</td>
<td></td>
</tr>
<tr>
<td>DT284</td>
<td>51</td>
</tr>
<tr>
<td>Digital Relative Humidity and Temperature Transmitter - Duct Mount</td>
<td></td>
</tr>
<tr>
<td>WR283</td>
<td>53</td>
</tr>
<tr>
<td>Digital Relative Humidity and Temperature Transmitter - Remote Probe for High Temperatures</td>
<td></td>
</tr>
<tr>
<td>WR285</td>
<td>55</td>
</tr>
<tr>
<td>Digital Relative Humidity Transmitter - Remote Probe for Pressurized Applications up to 30 bar (400 psi)</td>
<td></td>
</tr>
<tr>
<td>WR293</td>
<td>57</td>
</tr>
<tr>
<td>Digital Relative Humidity and Temperature Transmitter - Remote Probe for High Temperatures</td>
<td></td>
</tr>
<tr>
<td>H5000 & 5100</td>
<td>59</td>
</tr>
<tr>
<td>Capacitive Relative Humidity Sensor</td>
<td></td>
</tr>
<tr>
<td>H6000 & 6100</td>
<td>60</td>
</tr>
<tr>
<td>Capacitive Relative Humidity Sensor</td>
<td></td>
</tr>
<tr>
<td>I7000 & 7400 (Hygrosmart)</td>
<td>61</td>
</tr>
<tr>
<td>Interchangeable Module for Relative Humidity</td>
<td></td>
</tr>
<tr>
<td>S503</td>
<td>63</td>
</tr>
<tr>
<td>Relative Humidity Generator for Calibrations</td>
<td></td>
</tr>
<tr>
<td>Optidew Vision</td>
<td>65</td>
</tr>
<tr>
<td>Precision Dew-Point Meter</td>
<td></td>
</tr>
<tr>
<td>S904</td>
<td>67</td>
</tr>
<tr>
<td>Relative Humidity and Temperature Generator for Calibrations</td>
<td></td>
</tr>
<tr>
<td>OptiCal</td>
<td>69</td>
</tr>
<tr>
<td>Relative Humidity and Temperature Generator with built-in Chilled Mirror Reference</td>
<td></td>
</tr>
<tr>
<td>Control Kit</td>
<td>71</td>
</tr>
<tr>
<td>For the Calibration of Relative Humidity Sensors</td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>73</td>
</tr>
<tr>
<td>Applications for Humidity Sensors</td>
<td>82</td>
</tr>
<tr>
<td>A Guide to the Measurement of Humidity</td>
<td>85</td>
</tr>
<tr>
<td>Notes</td>
<td>97</td>
</tr>
</tbody>
</table>
Choosing the best product from this catalog
In this catalog we offer a wide range of products for a large number of applications. In order to help you find the correct product we have grouped the products in two ways: with product names and colored application groups.

The structure of the product names are as follows:

PC – probe with a connector to the cable
PF – probe with a fixed cable
RM – room monitoring
WM – wall mount
DT – duct mount
WR – wall-mount transmitter with remote probe on a cable
DM – for direct measurement with a hand meter
H – capacitive humidity sensors
I – interchangeable sensor module (Hygrosmart)
SF – dew-point instrument based on capacitive sensor technology
Easidew – dew-point instruments based on ceramic sensor technology, for low dew points.

Colored application groups
The six color levels you will find as a label on each product are based on application structure. For example, complex or accurate applications can be named as precision manufacturing - this group of applications often has demands for precise measurement instruments. Greenhouses, indoor swimming pools and storage of pharmaceutical products are controlled environments. Storage of paper, building automation and humidity control in museums is included in the HVAC category. The colors used in this catalog can be used as a guide for choosing the most suitable instrument for your application.

Chemical tolerance
When moisture levels need to be measured in a gas (or in air), changes in temperature, the composition of the gas and the humidity level will all influence the stability of the measurement. In some cases the gas needs to be analyzed prior to selection of the right product. Michell’s H-type capacitive humidity sensors have a long track record of good performance in various types of contaminated atmosphere. If you are unsure about your gas composition, we recommend that you contact your sales representative or Michell application engineer to verify the application with our extensive chemical tolerance database.

Interchangeable module
A number of products within our product range offer a unique interchangeable module, the I7000. Thanks to this concept there is no need to recalibrate your instrument. Simply replace the module for a factory calibrated module. The plug-and-play system guarantees fast replacement with a short down-time and no maintenance. Products presented in this catalog that are equipped with this interchangeable module, are marked with the interchangeable module symbol.

Interchangeable probe
In order to achieve better specifications, Michell Instruments has designed some of their products for use with an interchangeable probe. This interchangeable probe is resistant to temperatures of up to 200°C. As with the interchangeable module, the interchangeable probe has a plug-and-play system that guarantees fast replacement with almost no down-time or maintenance. The interchangeable probe can be sent back to the factory for servicing. Products presented in this catalog that are equipped with this interchangeable probe, are marked with the interchangeable probe symbol.
Humidity and Dew-Point Instruments

Easidew Advanced Ceramic Moisture Sensor Technology for direct trace moisture and dew-point measurements

Michell’s Easidew transmitters and instruments are rugged, industrial hygrometers for reliable moisture analysis, from trace levels to ambient air conditions. They can be used on a wide range of gases, including hazardous area applications (flammable or explosive gases), and with many corrosive gases. All Easidew instruments use Michell’s Advanced Ceramic Moisture Sensor technology.

The cutting edge Michell Ceramic Sensor is constructed using state-of-the-art thin and thick film techniques. Operation of the sensor depends upon the adsorption of water vapor into a porous non-conducting “sandwich” between two conductive layers built on top of a base ceramic substrate. The active sensor layer is very thin – less than one micron (a millionth of a metre) and the porous top conductor that allows transmission of water vapor into the sensor is precisely engineered to nanotechnology standards, thousandths of a millionth of a metre thick, in order to ensure precise and repeatable measurement.

Therefore the sensor responds very rapidly to changes in applied moisture, both when being dried (on process start-up) and when called into action if there is moisture ingress into a process. Despite this extreme sensitivity to changes in moisture content, the Michell Ceramic Moisture Sensor is incredibly rugged, due to the nature of its construction. To protect the sensor further against contaminants and burrs or metal shavings adhering to the pipework it is housed in a protective HDPE guard that keeps contaminants out but is porous to water vapor. All Michell Easidew Ceramic Moisture Sensors give 2°C dew point or better accuracy and excellent long-term reliability and stability in process applications.

Relative Humidity Sensors

Michell’s H5000 and H6000 Series are capacitive humidity sensors providing fast and accurate measurement of relative humidity in air, gases and other environments.

The H5000 is used to control ambient environments and is suitable for many applications. It can be used under repetitive and prolonged conditions of high humidity (close to saturation). Condensation or wetting do not alter sensor performance.

The H6000 provides enhanced protection from contamination and corrosive environments and can be used in most applications. It can meet the requirements resulting from difficult operations, such as tile, brick and pasta drying. It is protected against chemical contents in air and is very suitable for poultry farms or fruit/vegetable storage environments.

Key features of the H5000 and H6000 Series sensors are:

- Suitable for high humidity levels
- Wide operating temperature range
- Withstands condensation or wetting

Operating principle

The H5000 and H6000 relative humidity sensors are polymer film capacitive devices and benefit from extremely fast response, low hysteresis and high long-term stability.

Ceramic sensor tile layers
Humidity Sensor Technology

Michell’s relative humidity sensors were originally developed by the French company Coreci S.A. In 2008, the Michell Group acquired the technology and the dedicated team of sensor engineers in Lyon, France that have developed the product line and achieved an enviable, world-wide reputation for sensor quality and performance.

The excellent metrological characteristics of the H5000 and H6000 ensure that short- and long-term drift are minimized. Under extreme and prolonged conditions of high humidity (>95% RH), a drift may be observed, but it is reversible once ambient conditions are restored.

The key to the sensor’s performance is the design and construction of the super-thin hygroscopic polymer material that forms the dielectric of the sensor, sandwiched between two conductive metal electrodes. The outer electrode is engineered to have a porosity specific to water vapor and therefore adapts extremely quickly and reversibly to the prevailing humidity, giving a large capacitance response and therefore high sensitivity.

The sensors and their components have been specially designed and manufactured to provide excellent metrological features while avoiding interference of the measured environment.

Operating range

Michell’s H5000 and H6000 Series relative humidity sensors have an extremely wide range of operation for temperature and relative humidity measurements, making them suitable for virtually any application.

The maximum upper limit of the operating range is represented by the following water/air mixing ratios:

H5000: 250g water/Kg dry air, temp +200°C (+392°F)
H6000: 250g water/Kg dry air, temp +200°C (+392°F)

250g/kg dry air corresponds to 95% RH max at 70°C (158°F) or 21% RH max at 99°C (210°F)

Typical response curve

This curve illustrates the large sensitivity range of the sensor in terms of capacitance (pF) for 0 to 100% RH measurement range. See below for a typical variation of approximately 86 pF for a 100% RH variation.

Long term measurement stability

The excellent metrological characteristics of the H5000 and H6000 ensure that short- and long-term drift are minimized.

Under extreme and prolonged conditions of high humidity (>95% RH), a drift may be observed, but it is reversible once ambient conditions are restored.

Duration (DAYS): 1 7
Reversible deviation (% RH): 2% 3%

Long-term drift is low for a wide range of temperature and RH values. Typically, for a 12-month period the drift is less than 2%, measured at 75% RH and at ambient room temperature.
Humidity Sensor Technology

Calibration of in-service hygrometers should be verified on a 6 to 12 months schedule. Under normal operating conditions, accuracy is excellent, and an adjustment is normally not necessary. Saturated salt and unsaturated salt RH reference elements are available for calibration procedures, as well as more sophisticated automatic calibrators such as the S503, S904 and OptiCal. Under normal operating conditions, experience has shown that the life expectancy of sensors is longer than 10 years.

Behaviour in corrosive environments

H5000 and H6000 sensors use a synthetic polymer as a dielectric that is intrinsically resistant to corrosion and contamination. However, many industrial applications involve a large number of acid and oxidizing agents, and the long-term sensor reactions to oxidizing environments (such as SO2) with high RH levels are quite interesting. The KESTERNICH test is used to simulate the unit response under these conditions.

The test consists of immersing the products in an aggressive gas. A single testing day corresponds to 1 year under normal operating conditions, which accelerates ageing by 365 times. The KESTERNICH test (name of its inventor) meets the DIN 50.018 KF W 0.2 S standards.

Michell’s H5000 and H6000 sensors have been subjected to the KESTERNICH test under the supervision of an external laboratory - Laboratoire Central des Industries Electriques (L.C.I.E., n0356502 dated 14 July 1991).

The test results showed:
Appearance: slight alteration after 10 years.
Operation: No measurable effect after 10 years.

Condensation and cleaning

Condensation or occasional wetting have no adverse effects on H Series sensor reliability. H5000 and H6000 revert to their initial metrological features once the liquid water has been thoroughly eliminated.

H5000: at humidities above 98% RH there is a high risk of wetting. In this case the sensor will not be damaged, but 2-3 hours may be necessary before the sensor reverts to its normal condition.

H6000: wetting could occur in close-to-saturation operating conditions but in such cases the sensor will not be seriously damaged and it may take up to 30 minutes before reverting to its initial measuring conditions.

It is recommended not to touch the surfaces of the sensor with mechanical devices or your finger. Do not try to remove particles or deposits as they do not modify the characteristics of the sensor.

Cleaning: may be done by immersing the sensor in clean water and drying naturally in air.

Influence of air velocity on the measurement

H5000 and H6000 sensing elements require some elementary precautions in order to prevent the pollution of the active surface. The H5100 & H6100 cover provides mechanical protection.

H6000 hydrophobic layer increases dust protection in high air flow and in case of frequent wetting.

In all cases, some form of mechanical protection, such as a slotted, sintered or polymer guard is recommended. It is generally not necessary to force fluid circulation due to the rapid response time of the sensor, however a moving air or gas flow will aid equilibration times in the process itself. Fluid flow velocity up to 20m/second will have no adverse effects on sensors protected by a mechanical cover.

Calibration recommendations

All types of RH generators can be used for short calibration periods or for tests under 24 hours. Nevertheless, Stable Saturated Salt Solutions (S.S.S.S.) are suitable for calibrations and inspection but are not recommended for long-term tests, especially at high humidity.

A stabilization period of 5-15 minutes is recommended for relative humidity sensor calibration or other tests, depending upon the method of RH generation (e.g. a 15 minute period is recommended for S.S.S.S.). However, it should be noted that the actual stabilization time of some saturated and unsaturated mixtures can be significantly longer. Michell can advise on a calibration timing protocol to suit your exact needs.
PCMini52
Digital Relative Humidity and Temperature Mini Probe w/ Analog Output

The micro processor control and multi-point calibration gives the PCMini52 RH probe excellent performance in terms of accuracy and linearity. The mini probe can provide two linear analog outputs for temperature and relative humidity, dew point, absolute humidity or wet bulb temperature.

Highlights
- Output can be % RH, calculated absolute humidity, dew point or wet bulb temperature + temperature
- Excellent linearity, (μP) micro processor temperature compensated
- Low power consumption, fast settling time
- Small size: L = 80mm, ø12mm (L = 3.15”, ø0.47”)

Technical Specifications

<table>
<thead>
<tr>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range (RH)</td>
</tr>
<tr>
<td>Measurement range (T)</td>
</tr>
<tr>
<td>Accuracy at 23°C (73°F) Humidity</td>
</tr>
<tr>
<td>Accuracy at 23°C (73°F) Temperature</td>
</tr>
<tr>
<td>Stability – RH Sensor</td>
</tr>
<tr>
<td>Response time – RH Sensor</td>
</tr>
</tbody>
</table>

Electrical output/ input

Output signal options	0–1, 0–5, 0–10 V
Supply voltage	14–35 V DC (for 0–5 / 10 V output)
	4.5–35 V DC (for 0–1 V output)
	or 14–26 V AC (for all output ranges)

Operating conditions

Sensing element	-30 to +85°C (-22 to +185°F)
Housing	-30 to +85°C (-22 to +185°F)
Storage	-40 to +85°C (-40 to +185°F)

Mechanical specification

| **IP65 (NEMA 4 level)** |
Housing material	Molded polymer or stainless steel (ordering option)
Dimensions	L=80mm, ø12mm (L=3.15”, ø0.47”)
Weight	10g (0.35oz)
Electrical connections	4 pin, M8 connector

Accessories and Spare Parts

- 12mm (0.47”) Slotted protection cap, black: A000003
- 12mm (0.47”) PVDF filter: A000007
- 12mm (0.47”) PVDF filter with protection cap, black: A000018
- 12mm (0.47”) Mesh filter with protection cap, black: A000022
- 12mm (0.47”) Flat SS sintered dust filter: A000023
- 12mm (0.47”) Arrow 20 μm SS sintered filter: A000028
- 12mm (0.47”) Connector with 2m (6.5’) cable: A000033
- 12mm (0.47”) Connector with 5m (16’) cable: A000036
- 12mm (0.47”) Connector with 10m (33’) cable: A000037
- 1/2” NPT SS adj fitting for SS probe: A0000101
- Aluminum mounting flange for ø12.0mm (ø0.47”) SS probes: A0000111
- ø90mm (3.54”) WM weather prot. cap (in combination with A0000111 for ø12mm (0.47”) probes): A0000120
- ø120mm (4.72”) WM weather prot. cap (in combination with A0000111 for ø12mm (0.47”) probes): A0000125
- 12mm (0.47”) Connector without cable (with solder terminals): A0000321
- 12mm (0.47”) Connector with cable (customer spec length): A0000321XM
- 12mm (0.47”) Connector with 20m (25.6”) cable: A0000322

You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT

HKC
Humidity and Dew-Point Instruments

© Michell Instruments 2009-2011

Environmental Control

Electrical Connections

<table>
<thead>
<tr>
<th>Cable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Supply voltage V +</td>
</tr>
<tr>
<td>White</td>
<td>Output RH, Dew Point or Absolute Humidity</td>
</tr>
<tr>
<td>Black</td>
<td>Output temperature</td>
</tr>
<tr>
<td>Blue</td>
<td>Common ground</td>
</tr>
</tbody>
</table>

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}+{Feature D}+{Feature E}+{Feature F}+{Feature G}

Order example: PCMINI52+4+XX+H+T1+CA+03
Relative humidity and temperature mini probe PCMini52, 0-5 V output, molded polymer body, 0-100% RH signal, -20 to +80ºC (-4 to +176°F) temperature range, no cable, 12mm slotted protection cap black

Base Model (Feature A)
Relative humidity and temperature mini probe PCMINI52

Signal Output (Feature B)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10 V</td>
<td>3</td>
</tr>
<tr>
<td>0–5 V</td>
<td>4</td>
</tr>
<tr>
<td>0–1 V</td>
<td>5</td>
</tr>
</tbody>
</table>

Body (Feature C)

<table>
<thead>
<tr>
<th>Material</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless steel</td>
<td>SX</td>
</tr>
<tr>
<td>Molded polymer</td>
<td>XX</td>
</tr>
</tbody>
</table>

Moisture Signal (Feature D)

<table>
<thead>
<tr>
<th>Signal</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH</td>
<td>H</td>
</tr>
<tr>
<td>Calculated dp temp (Range (Td) -40 to +60ºC (-40 to +140°F) - Only possible with Temp Signal T1)</td>
<td>D</td>
</tr>
<tr>
<td>Calc absolute humidity (Abs) (Range Abs from 0-200g/m3 - Only possible with Temp Signal T1)</td>
<td>A</td>
</tr>
<tr>
<td>Calculated wetbulb temp (Range (Tw) -40 to +60ºC (-40 to +140°F) - Only possible with Temp Signal T1)</td>
<td>W</td>
</tr>
</tbody>
</table>

Filter (Feature G)

<table>
<thead>
<tr>
<th>Filter Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>12mm (0.47") Slotted protection cap, black</td>
<td>03</td>
</tr>
<tr>
<td>12mm (0.47") PVDF filter with protection cap, black</td>
<td>18</td>
</tr>
<tr>
<td>12mm (0.47") Mesh filter with protection cap, black</td>
<td>22</td>
</tr>
<tr>
<td>12mm (0.47") Flat SS sintered dust filter</td>
<td>23</td>
</tr>
<tr>
<td>12mm (0.47") Arrow 20 μm SS sintered filter</td>
<td>28</td>
</tr>
</tbody>
</table>

Cable Length (Feature F)

<table>
<thead>
<tr>
<th>Cable Length</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cable</td>
<td>CA</td>
</tr>
<tr>
<td>12mm (0.47") Connector with 2m (6.5’) cable</td>
<td>CB</td>
</tr>
<tr>
<td>12mm (0.47") Connector with 5m (16’) cable</td>
<td>CC</td>
</tr>
<tr>
<td>12mm (0.47") Connector with 10m (33’) cable</td>
<td>CD</td>
</tr>
</tbody>
</table>

Temperature Signal (Feature E)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>No T output (Not available with 0 - 10 V)</td>
<td>X</td>
</tr>
<tr>
<td>-20 to +80ºC (-4 to +176°F)</td>
<td>T1</td>
</tr>
<tr>
<td>Other output scaling available on request</td>
<td>TX</td>
</tr>
</tbody>
</table>

© Michell Instruments 2009-2011
The PCMini70 is a relative humidity mini probe based on the interchangeable Hygrosmart module.

Highlights
- Designed for OEM applications
- Based on the interchangeable Hygrosmart module
- Compact housing

Dimensions

Technical Specifications

<table>
<thead>
<tr>
<th>Performance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range (RH)</td>
<td>0–100% RH</td>
</tr>
<tr>
<td>Measurement range (T)</td>
<td>-30 to +85°C (-22 to +185°F)</td>
</tr>
<tr>
<td>Accuracy at 23°C (73°F) Humidity</td>
<td><±2% RH (5–95% RH)</td>
</tr>
<tr>
<td>Accuracy at 23°C (73°F) Temperature</td>
<td>±0.2°C (±0.36°F)</td>
</tr>
<tr>
<td>Stability - RH Sensor</td>
<td><±1% RH/year</td>
</tr>
<tr>
<td>Response time - RH Sensor</td>
<td><10 sec typical (for 90% of the step change)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical output/ input</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output signal (RH)</td>
<td>0-1 V</td>
</tr>
<tr>
<td>Output signal (T)</td>
<td>3-wire 1/3 DIN Pt100 direct</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>5 V DC ±5%</td>
</tr>
<tr>
<td>Load resistance</td>
<td>R > 5K Ω</td>
</tr>
<tr>
<td>Digital</td>
<td>CMOS compatible</td>
</tr>
<tr>
<td>Current consumption</td>
<td>1.5 mA max</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>-30 to +85°C (-22 to +185°F)</td>
</tr>
<tr>
<td>Sensing element</td>
<td>-40 to +85°C (-40 to +185°F)</td>
</tr>
<tr>
<td>Housing</td>
<td>-40 to +85°C (-40 to +185°F)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical specification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing material</td>
<td>AISI 316</td>
</tr>
<tr>
<td>Dimensions</td>
<td>L=53mm , Ø22mm (L=2.08", Ø0.86")</td>
</tr>
<tr>
<td>Filter</td>
<td>AISI 316 Stainless steel mesh</td>
</tr>
<tr>
<td>Weight</td>
<td>65g (2.3oz)</td>
</tr>
<tr>
<td>Electrical connections</td>
<td>Threaded nipple + nut</td>
</tr>
</tbody>
</table>

Accessories and Spare Parts

- Hygrosmart without Pt100 output: I7-0-00-0
- Hygrosmart with Pt100 output: I7-0-00-1
- SS cap slotted with mesh filter: K1
- SS cap slotted with PTFE filter: Z1
Electrical Connections

<table>
<thead>
<tr>
<th>Cable</th>
<th>Pt100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0 V</td>
</tr>
<tr>
<td>Red</td>
<td>+5 V</td>
</tr>
<tr>
<td>Violet</td>
<td>Out V</td>
</tr>
<tr>
<td>Yellow</td>
<td>Out F</td>
</tr>
</tbody>
</table>

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is **PCMini70** and then add on options to create a string: (Feature A)+(Feature B)+(Feature C)

Order example: **PCMini70+1+K1**
Relative humidity and temperature mini probe PCMini70, Pt100 direct output and stainless steel cap slotted with mesh filter
PC33 & 52
Analog Relative Humidity and Temperature Probe

The PC series offers a comprehensive range of relative humidity probes for accurate, stable and repeatable measurements. Available with analog output signals, the PC series can be installed in a wide variety of applications.

Highlights
- Low cost PC33 with analog output is designed for HVAC applications
- PC52 with analog output is designed for accurate measurement in controlled environments

Technical Specifications

Performance
- **Measurement range (RH):** 0–100% RH
- **Measurement range (T):** -20 to +80°C (-4 to +176°F)
- **Accuracy at 23°C (73°F):**
 - PC52: <±2% RH (10–90% RH)
 - PC33: <±3% RH (30–80% RH)
- **Accuracy at 23°C (73°F):**
 - Temperature: ±0.2°C (±0.36°F)
 - PC33: ±0.3°C (±0.54°F)
- **Stability - RH Sensor:** ±1% RH/year
- **Response time - RH Sensor:** <10 sec typical (for 90% of the step change)

Electrical output/ input
- **Output signal:** 4–20 mA, 0–1, 0–5, 0–10 V
- **Supply voltage:**
 - 14–30 V DC (for 0–5 / 0–10 V output)
 - 5–30 V DC (0–1 V & mA output)

Operating conditions
- **Operating temperature:**
 - Probe, Housing: -30 to +85°C (-22 to +185°F)
 - Storage: -40 to +85°C (-40 to +185°F)

Mechanical specification
- **Ingress protection:** IP65 (NEMA 4 level)
- **Housing material:** Molded polymer or stainless steel (ordering option)
- **Dimensions:** L=130mm, ø19mm (L=5.11", ø0.74")
- **Weight:** 30g (1.06oz) without cable (molded polymer version)
- **Electrical connections:** M12

Accessories and Spare Parts

- 19mm (0.75") slotted protection cap black A000002
- 19mm (0.75") PVDF filter A000014
- 19mm (0.75") PVDF filter with protection cap black A000015
- 19mm (0.75") Mesh filter with protection cap, black A000021
- 19mm (0.75") Arrow SS sintered filter 5um / 10um / 20um A000025/26/27
- 19mm (0.75") Connector, no cable, with screw terminals A000030
- 19mm (0.75") Connector with cable (customer spec length) A000031
- 19mm (0.75") Connector with 2m (6.5") cable A000032
- 19mm (0.75") Filt er 2um with protection cap black A000040
- 19mm (0.75") Oleophobic oil filter 0.7μm with protection cap black A000042
- 3/4" NPT SS adj. fitting for SS probes A000044
- Al mounting flange for ø19.0mm (ø0.75") SS probe A000100
- ø90.0mm (ø3.54") Wall mount weather protection cap A000110
- ø120.0mm (ø4.72") Wall mount weather protection cap A000120
- Mini flange for ø19.0mm (ø0.75") molded polymer probe A000125
- You can check your hygrometer with the Control Kit HKC A000150

www.michell.com

Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.
Electrical Connections

<table>
<thead>
<tr>
<th>Voltage output</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>Pin 1</td>
</tr>
<tr>
<td>Green</td>
<td>Pin 4</td>
</tr>
<tr>
<td>Yellow</td>
<td>Pin 2</td>
</tr>
<tr>
<td>Brown</td>
<td>Pin 3</td>
</tr>
</tbody>
</table>

4-20 mA output 2-wire

<table>
<thead>
<tr>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
</tr>
<tr>
<td>Brown</td>
</tr>
<tr>
<td>Green</td>
</tr>
<tr>
<td>Yellow</td>
</tr>
</tbody>
</table>

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is (Feature A) and then add on options to create a string: (Feature A)+(Feature B)+(Feature C)+(Feature D)+(Feature E)+(Feature F)

Order example: PC33+4+XX+T3+A+02
- Relative humidity and temperature probe with 1 pt calibration PC33, 0-5 V output, molded polymer body, temperature range 0 to +50ºC, no cable, 19mm slotted protection cap

Order example: PC52+4+XX+T3+A+02
- Relative humidity and temperature probe with 2 pt calibration PC52, 0-5 V output, molded polymer body, temperature range 0 to +50ºC, no cable, 19mm slotted protection cap
Humidity and Dew-Point Instruments

PC62 & 62V
Digital Relative Humidity & Temperature Probe with Digital or Analog Output

The PC series offers a comprehensive range of relative humidity probes for accurate, stable and repeatable measurements. Available with analog or digital output signals, the PC series can be installed in a wide variety of applications.

Highlights

- PC62 is designed for high accurate measurements in precision manufacturing applications
- Digital or analog output possible on the PC62
- PC62 available with calculated absolute humidity, dew point or wet bulb temperature output

Technical Specifications

Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range (RH)</td>
<td>0–100% RH</td>
</tr>
<tr>
<td>Measurement range (T)</td>
<td>-20 to +80°C (-4 to +176°F)</td>
</tr>
<tr>
<td>Humidity Accuracy at 23°C (73°F)</td>
<td>±2% RH (10–90% RH)</td>
</tr>
<tr>
<td>Temperature Accuracy at 23°C (73°F)</td>
<td>±0.2°C (+0.36°F)</td>
</tr>
<tr>
<td>Stability – RH Sensor</td>
<td>±1% RH/year</td>
</tr>
<tr>
<td>Response time – RH Sensor</td>
<td><10 sec typical (for 90% of the step change)</td>
</tr>
</tbody>
</table>

Electrical output/input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output signal</td>
<td>0–1 V, 0–5 V, 0–10 V, RS232, RS485</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>14–30 V DC (for 0–5 / 0–10 V / RS485 / RS232 output)</td>
</tr>
<tr>
<td>5–30 V DC (0–1 V output)</td>
<td>5–30 V DC</td>
</tr>
</tbody>
</table>

Operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>-30 to +85°C (-22 to +185°F)</td>
</tr>
<tr>
<td>Storage</td>
<td>-40 to +85°C (+40 to +185°F)</td>
</tr>
</tbody>
</table>

Mechanical specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress protection</td>
<td>IP65 (NEMA 4 level)</td>
</tr>
<tr>
<td>Housing material</td>
<td>Molded polymer or stainless steel (ordering option)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>L=130mm, ø19mm (L=5.11", ø0.74")</td>
</tr>
<tr>
<td>Weight</td>
<td>30g (1.06oz) (molded polymer) without cable</td>
</tr>
<tr>
<td>Electrical connections</td>
<td>M12</td>
</tr>
</tbody>
</table>

Accessories and Spare Parts

- 19mm (0.75") Slotted protection cap black
- 19mm (0.75") PVDF filter
- 19mm (0.75") PVDF filter with protection cap black
- 19mm (0.75") Mesh filter with protection cap black
- 19mm (0.75") Arrow SS sintered filter 5µm / 10µm / 20µm
- 19mm (0.75") Connector, no cable, with screw terminals
- 19mm (0.75") Connector, with cable (customer specified length)
- 19mm (0.75") Connector with 2m (6.5") cable
- 19mm (0.75") Connector with 5m (16") cable
- 19mm (0.75") Foil filter 2µm with protection cap black
- 19mm (0.75") Oleophobic foil filter 0.7µm with protection cap black
- 19mm (0.75") Foil filter 1.5µm with protection cap black
- 3/4" NPT SS adj. fitting for SS probes
- Al mounting flange for ø19.0mm (ø0.75") SS probe
- ø90.0mm (ø3.54") Wall mount weather protection cap
- ø120.0mm (ø4.72") Wall mount weather protection cap
- Mini flange for ø19.0mm (ø0.75") molded polymer probe

You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT

Issue No: PC62662V_97209_V2_UK_1110

Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.
Electrical Connections

<table>
<thead>
<tr>
<th>Cable</th>
<th>Connector</th>
<th>Voltage output</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>Pin 1</td>
<td>Power Supply V +</td>
</tr>
<tr>
<td>Green</td>
<td>Pin 4</td>
<td>Output RH +</td>
</tr>
<tr>
<td>Yellow</td>
<td>Pin 2</td>
<td>Output temperature +</td>
</tr>
<tr>
<td>Brown</td>
<td>Pin 3</td>
<td>Common ground</td>
</tr>
</tbody>
</table>

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: (Feature A)+(Feature B)+(Feature C)+(Feature D)+(Feature E)+(Feature F)+(Feature G)

Order example: PC62V+4+XX+T1+TD+CA+02

Relative humidity and temperature probe PC62V, 0-5 V output, molded polymer, temp range -20 to +80°C (-4 to +176°F) with calculated dew-point temperature and temperature output, no cable, 19mm slotted protection cap, black

Base Model (Feature A)

- Relative humidity and temperature probe
 - PC62

Signal Output (Feature B)

- RS232: 0
- RS485: 1

Body (Feature C)

- Stainless steel: SX
- Molded polymer: XX

Temperature (Feature D)

- Digital output in °C: TC
- Digital output in °F: TF

Cable (Feature E)

- No cable: CA
- 19mm (0.75”) Connector, no cable, with screw terminals: CB
- 19mm (0.75”) Connector with 2m (6.5”) cable: CC
- 19mm (0.75”) Connector with 5m (16”) cable: CD

Filter (Feature F)

- 19mm (0.75”) slotted protection cap black: 02
- 19mm (0.75”) PVDF filter with protection cap black: 15
- 19mm (0.75”) Mesh filter with protection cap, black: 21
- 19mm (0.75”) Arrow SS sintered filter 5um: 25
- 19mm (0.75”) Arrow SS sintered filter 10um: 26
- 19mm (0.75”) Arrow SS sintered filter 20um: 27
- 19mm (0.75”) Foil filter 2um with protection cap black: 40
- 19mm (0.75”) Oleophobic foil filter 0.7um with protection cap black: 42
- 19mm (0.75”) Foil filter 1.5um w/protection cap black: 44

Moisture Signal (Feature E)

- Output 1: Abs 0-200g/m³
 - Output 2: Temp range: -20 to +80°C (-4 to +176°F)
 - Output 1: Temp range: -40 to +60°C
 - Output 2: Temp range: -20 to +80°C (-4 to +176°F)
 - Output 1: Temp range: -40 to +60°C
 - Output 2: Temp range: -20 to +80°C (-4 to +176°F)

Cable (Feature F)

- No cable: CA
- 19mm (0.75”) Connector, no cable, with screw terminals: CB
- 19mm (0.75”) Connector with 2m (6.5”) cable: CC
- 19mm (0.75”) Connector with 5m (16”) cable: CD

Filter (Feature G)

- 19mm (0.75”) slotted protection cap black: 02
- 19mm (0.75”) PVDF filter with protection cap black: 15
- 19mm (0.75”) Mesh filter with protection cap, black: 21
- 19mm (0.75”) Arrow SS sintered filter 5um: 25
- 19mm (0.75”) Arrow SS sintered filter 10um: 26
- 19mm (0.75”) Arrow SS sintered filter 20um: 27
- 19mm (0.75”) Foil filter 2um with protection cap black: 40
- 19mm (0.75”) Oleophobic foil filter 0.7um with protection cap black: 42
- 19mm (0.75”) Foil filter 1.5um w/protection cap black: 44

© Michell Instruments 2009-2011
PFMini72 relative humidity probes are equipped with the Hygrosmart relative humidity sensor/converter. This interchangeable module has miniaturized electronics and does not require recalibration.

Highlights
- Designed for meteorological applications
- Based on the interchangeable Hygrosmart module

Technical Specifications

Performance
- Measurement range (RH) 0–100% RH
- Measurement range (T) -20 to +80°C (-4 to +176°F)
- Accuracy at 23°C (73°F) Humidity <±2% RH (5–95% RH)
- Accuracy at 23°C (73°F) Temperature ±0.2°C (±0.36°F)
- Stability - RH Sensor <±1% RH/year
- Response time - RH Sensor <10 sec typical (for 90% of the step change)

Electrical output/ input
- Output signal (RH) 0–1 V
- Output signal (T) 0–1 V or 3-wire 1/3 DIN Pt100 direct
- Supply voltage 5.5–32 V DC
- Current consumption 2 mA max

Operating conditions
- Operating temperature
 - Probe -20 to +80°C (-4 to +176°F)
 - Housing -20 to +80°C (-4 to +176°F)
 - Storage -40 to +85°C (-40 to +185°F)

Mechanical specification
- Ingress protection IP65 (NEMA 4 level)
- Housing material 316L
- Dimensions L=92mm, ø18mm (L=3.62", ø0.70")
- Weight 150g (5.29oz)
- Electrical connections 4- or 6-wire output cable, length 2m (6.5’)

Accessories and Spare Parts

- Mounting clip 2510367
- Hygrosmart without Pt100 output 17-0-00-0
- Hygrosmart with Pt100 output 17-0-00-1
- SS cap slotted with mesh filter K1
- SS cap slotted with PTFE filter Z1
Electrical Connections

<table>
<thead>
<tr>
<th>4 wire cable</th>
<th>6 wire cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>Black</td>
<td>Black</td>
</tr>
<tr>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>Output RH +</td>
<td>Output RH +</td>
</tr>
<tr>
<td>Common ground</td>
<td>Common ground</td>
</tr>
<tr>
<td>Power supply V+</td>
<td>Power supply V+</td>
</tr>
<tr>
<td>Output temperature +</td>
<td>Pt100</td>
</tr>
<tr>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>Green</td>
<td>Green</td>
</tr>
</tbody>
</table>

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+(Feature B)+(Feature C)+(Feature D)+(Feature E)

Order example: PFMINI72+1+B1+2+K1
Relative humidity and temperature mini probe PFMini72, Pt100 direct output, stainless steel body, 2m (6.5’) cable, stainless steel slotted cap with mesh filter

Base Model (Feature A)
- Relative humidity and temperature mini probe
 - PFMINI72

Temperature (Feature B)
- No temperature output
 - 0
- Pt100 direct
 - 1
- 0-1 V (-20 to +80ºC (-4 to +176ºF) range)
 - B

Body (Feature C)
- Stainless steel
 - B1

Filter (Feature E)
- Stainless steel slotted cap with mesh filter
 - K1
- Stainless steel slotted cap with PTFE filter
 - Z1

Cable (Feature D)
- 2m (6.5’)
 - 2
PF211
HVAC Relative Humidity Probe

PF211 relative humidity probes are equipped with the Hygrosmart relative humidity sensor/converter. This interchangeable module has miniaturized electronics and does not require recalibration.

Highlights
- Designed for HVAC and Environmental Control applications
- Based on the interchangeable Hygrosmart module

Technical Specifications

Performance
- Measurement range (RH) 0–100% RH
- Measurement range (T) -30 to +70°C (-22 to +158°F)
- Accuracy at 23°C (73°F) Humidity <±2% RH (5–95% RH)
- Accuracy at 23°C (73°F) Temperature ±0.2°C (±0.36°F)
- Stability - RH Sensor <±1% RH/year
- Response time - RH Sensor <10 sec typical (for 90% of the step change)

Electrical output/input
- Output signal (RH) 4–20 mA, 0–10 V
- Output signal (T) 3-wire 1/3 DIN Pt100 direct
- Supply voltage 10–32 V DC for 4–20 mA output
- 15–32 V DC for 0–10 V output
- 24 V AC ±10% (PF211B)
- Load resistance Output 4–20 mA: R_{Load} < (U_v-9)/0.02
- Output 0–10 V: R > 1K Ω
- Current consumption 20 mA max

Operating conditions
- Operating temperature Probe, Housing, Storage -30 to +70°C (-22 to +158°F)

Mechanical specification
- Ingress protection IP54
- Housing material ABS
- Dimensions L=175mm, ø19mm (L=6.89", ø0.75")
- Weight 184g (6.49oz)
- Electrical connections 5 or 6-wire output cable, 3m (9.8’)

Accessories and Spare Parts
- Mounting clip 2510387
- Molded polymer fitting 3401135
- Fixing collar 3420085
- SS sintered filter H4
- ABS cap slotted with PTFE filter, white Z2
- Hygrosmart with Pt100 output (RH = 0.2–1 V) I7-4-00-1
- Hygrosmart with Pt100 output (RH = 0–1 V) I7-0-00-1
Electrical Connections

<table>
<thead>
<tr>
<th>Cable</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Output RH +</td>
</tr>
<tr>
<td>Blue</td>
<td>Output RH -</td>
</tr>
<tr>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Pt100</td>
</tr>
</tbody>
</table>

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}+{Feature D}

Order example: PF211+A+C+Z2
Relative humidity probe PF211, output signal 4-20 mA, 3m (9.8') cable, ABS cap slotted with PTFE filter, white

Base Model (Feature A)
- Relative humidity probe PF211

Signal Output (Feature B)
- 4-20 mA output 2-wire A
- 0-10 V output 3-wire B

Cable (Feature C)
- 3m (9.8') C
- 5m (16') D
- 7m (23') E
- 10m (33') F
- 15m (49') G

Filter (Feature D)
- ABS cap slotted with PTFE filter, white Z2
- SS sintered filter H4
SF52 Dew-Point Transmitter

The SF52 dew-point transmitter from Michell Instruments can provide 4–20 mA or voltage signal for either dew point or absolute humidity with excellent accuracy and linearity. The robust housing, together with an operating pressure of up to 20 bar (290 psi), makes the SF52 ideal for many dew-point and moisture measurement applications.

Highlights
- Designed for OEM applications
- Dew-point or absolute humidity output
- Flush fitting filter disc for minimal flow disturbance
- Excellent linearity and temperature compensation

Technical Specifications

Performance
- **Measurement range (dew point)*** -30 to +60°C (-22 to +140°F), dew-point temperature
- **Measurement range (absolute humidity)*** 0 to 200 g/m³ (0 to 87.4 gr/ft³)
- **Accuracy (dew point)*** ±2°C (±3.6°F) dew point
- **Accuracy (absolute humidity)*** 0.4 to 3 g/m³ (0.175 to 1.311 gr/ft³) on value of absolute humidity
- **Stability*** <1°C / year (<1.8°F / year)
- **Response time*** <10 sec typical (for 90% of the step change)

Electrical output/input
- **Output signal*** 0–1, 0–5, 0–10 V or 4–20 mA
- **Supply voltage*** 14-30 V DC (for 0–10 V output)
 - 8-30 V DC (for 0-1 / 0-5 V / 4-20 mA output)
- **Current consumption*** 9 mA + load current
- **Supply voltage influence*** ±0.005% RH/V

Operating conditions
- **Operating temperature***
 - Probe, Housing: -30 to +85°C (-22 to +185°F)
 - Storage: -40 to +85°C (-40 to +185°F)
- **Operating pressure*** 20 bar (290 psi) maximum
- **Temperature coefficient*** Temperature compensated across operating temperature range

Mechanical specification
- **Ingress protection*** IP65 (NEMA 4 level)
- **Housing material*** Nickel-coated brass
- **Dimensions*** L=85mm, ø24mm (L=3.34”, ø0.94”) (max)
- **Filter*** HDPE front filter
- **Weight*** 320g (11.29oz)
- **Mechanical connections*** G ½” BSP (DIN ISO 228) or ½” NPT
- **Cable*** 2m (6.5’)

Accessories and Spare Parts

- **HDPE filter*** A000019
- **Bonded seal, (DIN ISO 228) G1/2” (BSP)** A000340
- **Sample block without filter*** A000350
- **Sample block with filter*** A000351
Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}+{Feature D}+{Feature E}

Order example: SF52+4+X+T1+N

Dew-point transmitter SF52, 0-5 V output, Td °C/ºF dp signal -40 to +60°C (-40 to +140ºF), temperature range -20 to +80°C (-4 to +176ºF), 1/2" NPT pressure port.
The Easidew Transmitter is designed for ease of use, incorporating all the features needed to make installation and operation as simple as possible. For the first time, dew-point measurement is made as accessible as temperature and pressure with this fully configured, calibrated transmitter that can be instantly incorporated into your air or gas management and control system.

Highlights
- 2-wire loop powered connection
- Dew point or ppm moisture content
- IP66 (NEMA 4)
- Excellent sensor protection
- Measurement range -100 to +20°C (-148 to +68°F)
- Operating temperature -40 to +60°C (-40 to +140°F)
- Fast response

Technical Specifications

Performance
- **Measurement range (dp)**: -100 to +20°C (-148 to +68°F) dew point
- **Accuracy (dp)**: ±2°C (±3.6°F) dew point
- **Response time**: 5 mins to T95 (dry to wet)
- **Repeatability**: 0.5°C (0.9°F) dew point

Electrical output/input
- **Output signal**: 4-20 mA (2-wire connection, current source) User configurable over range
- **Output**
 - Dew point, moisture content for ppm
- **Output range**
 - Dew point: -100 to +20°C (-148 to +68°F)
 - Moisture content in gas: 0-3000 ppm
- **Supply voltage**: User configurable over range
- **Load resistance**: Max 250 Ω @ 12 V (500 Ω @ 24 V)
- **Current consumption**: 20 mA max

Operating conditions
- **Operating humidity**: 0–100% RH
- **Operating temperature**: -40 to +60°C (-40 to +140°F)
- **Operating pressure**: 45 MPa (450 barg / 6500 psig) max
- **Flow rate**: 1 to 5 Nl/min (2.1 to 10.6 scfh) mounted in standard sampling block; 0 to 10 m/sec (0 to 32.8 fps) direct insertion
- **Temperature coefficient**: Temp compensated across operating temp range

Mechanical specification
- **Ingress protection**: IP66 in accordance with standard BS EN 60529:1992, and NEMA 4 in protection accordance with standard NEMA 250-2003
- **Housing material**: Stainless steel
- **Dimensions**: L=132mm x ø27mm (L=5.19” x ø1.00”)
- **Filter**: HDPE Guard <10μm (80μm sint guard optional)
- **Mounting Thread**: 5/8” - 18 UNF
- **Weight**: 150g (5.29oz)
- **Electrical connections**: See table
- **Interchangeability**: Fully interchangeable transmitter

Diagnostic conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor fault</td>
<td>23 mA</td>
</tr>
<tr>
<td>Under-range dew point</td>
<td>4 mA</td>
</tr>
<tr>
<td>Over-range dew point</td>
<td>20 mA</td>
</tr>
</tbody>
</table>

Dimensions

Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.
Easidew Transmitter

Accessories and Spare Parts

- Pack of 10 replacement HDPE guards: EA2-HDPE
- SS sintered guard replacement: SSG
- Easidew communications kit for EA2: EA2-CK
- SS sample block (5/8" UNF thread with 1/8" NPT ports): CSB
- 3/4"-16 UNF to 5/8" UNF male adapter, SS (Panametrics thread): APT-PAN
- G 1/2" to 5/8" UNF male adapter, SS (E&H or GEI thread): APT-GEI
- 1/2" BSP to 5/8" UNF thread adapter: APT-BSP
- Cable, 0.8m (2.62") length with fittings + additional cable: EA2-CAB-XX
- Easidew Sampler (see Accessories Section for details): EA2-SAM
- 10 pk particulate filter cartridges (for SS filter unit (9996061)): SSF-PF-10PK
- 6mm (0.24") O.D thick walled PTFE sample tube: PTFE-XX

Electrical Connections

- 4-20 mA connections 2-wire
 - Pin 1: 4-20 mA
 - Pin 3: POWER

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}

Order example: EA2-TX+100+HD
Easidew Transmitter, 2-wire, 4-20 mA output, measurement range -100 to +20°C (-148 to +68°F) dp, HDPE guard

Base Model (Feature A)
Easidew Transmitter: EA2-TX

Range (Feature B)
- -100 to +20°C (-148 to +68°F) dp range: 100
- Non-standard measurement range: v = zero value, w = full scale value, x = unit (C= °Cdp, F=°Fdp, P=ppm) y = Pressure for ppm conversion in bar/psi, z = pressure unit (PG=psig, PA=psia, BG=barg, BA=bara)
 - blank = 0 barg/0 psig

Protection (Feature C)
- Standard HDPE guard (with protection against fine particulate (<10μm)): HD
- SS sintered guard: SS
- SS sintered guard with flanged mounting: FL
Easidew TX I.S.
ATEX, FM/CSA Certified Dew-Point Transmitter

An ATEX, FM/CSA certified, 2-wire, rugged impedance dew-point transmitter for continuous measurement in hazardous area applications.

Highlights
- ATEX FM/CSA certified
- 2-wire loop powered connection
- Dew point or ppm moisture content
- IP66 (NEMA 4)
- Excellent sensor protection
- Wide measurement range, calibrated -100 to +20°C (-148 to +68°F) dew point
- Operating temperature: -40 to +60°C (-40 to +140°F)
- Fast response

Technical Specifications

Performance
- Measurement range (dp): -100 to +20°C (-148 to +68°F) dew point
- Accuracy (dp): ±2°C (±3.6°F) dew point
- Response time: 5 mins to T95 (dry to wet)
- Repeatability: 0.5°C (0.9°F) dew point

Electrical output/input
- Output signal: 4-20 mA (2-wire connection, current source) User configurable over range
- Output: Dew point, moisture content for ppmV
- Output range: Dew point: -100 to +20°C (-148 to +68°F)
- Moisture content in gas: 0-3000 ppmV
- Supply voltage: 12–28 V DC
- Load resistance: Max 250 Ω @ 12 V (500 Ω @ 24 V)
- Current consumption: 20 mA max

Operating conditions
- Operating humidity: 0–100% RH
- Operating temperature: -40 to +60°C (-40 to +140°F)
- Operating pressure: 45 MPa (450 barg / 6500 psig) max
- Flow rate: 1 to 5 Nl/min (2.1 to 10.6 scfh) mounted in standard sampling block; 0 to 10 m/sec (0 to 32.8 fps) direct insertion
- Temperature coefficient: Temperature compensated across operating temperature range

Mechanical specification
- Hazardous Area Certificates: ATEX - Ex II 1G Ex ia IIC T4
 FM - I.S. I 1 ABCD T4 (Ta = +60°C)
 CSA - IS Class 1 Div 1 Groups ABCD T4
 IECEx - EX ia IIC T4 (-20°C ≤ Ta ≤ +60°C)
- Ingress protection: IP66 in accordance with standard BS EN 60529:1992, and NEMA 4 in protection accordance with standard NEMA 250-2003
- Housing material: Stainless steel
- Dimensions: L=132mm x ø27mm (L=5.19” x ø1.06”)
- Filter: HDPE Guard <10μm, 80μm sintered guard (optional)
- Mounting Thread: 5/8” - 18 UNF
- Weight: 150g (5.29oz)
- Interchangeability: Fully interchangeable transmitter

Diagnostic conditions (factory programmed)
- Condition: Sensor fault, Under-range dew point, Over-range dew point
- Output: 23 mA, 4 mA, 20 mA

Approved galvanic isolators
- KFD2-CR-EX1.20200
- KFD2-CR-EX1.30200
- KFD0-CS-EX1.50P
- KFD0-CS-EX2.50P
- KFD2-STC4-EX1.H
- MTL5041, MTL5040

www.michell.com

Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.
Accessories and Spare Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pack of 10 replacement HDPE guards</td>
<td>EA2-HDPE</td>
</tr>
<tr>
<td>SS sintered guard replacement</td>
<td>SSG</td>
</tr>
<tr>
<td>Easidew communications kit for EA2</td>
<td>EA2-CK</td>
</tr>
<tr>
<td>SS sample block (5/8" UNF thread with 1/8" NPT ports)</td>
<td>CSB</td>
</tr>
<tr>
<td>3/4"-16 UNF to 5/8" UNF male adapter, SS (Panametrics thread)</td>
<td>APT-PAN</td>
</tr>
<tr>
<td>G 1/2" to 5/8" UNF male adapter, SS (E&H or GEI thread)</td>
<td>APT-GEI</td>
</tr>
<tr>
<td>1/2" BSP to 5/8" UNF thread adapter</td>
<td>APT-BSP</td>
</tr>
<tr>
<td>Cable, 0.8m (2.62") length with fittings + additional cable</td>
<td>EA2-CAB-XX</td>
</tr>
<tr>
<td>Easidew Sampler (see Accessories Section for details)</td>
<td>EA2-SAM</td>
</tr>
<tr>
<td>10 pk particulate filter cartridges (for SS filter unit (9996061))</td>
<td>SSF-PF-10PK</td>
</tr>
<tr>
<td>6mm (0.24") O.D thick walled PTFE sample tube</td>
<td>PTFE-XX</td>
</tr>
</tbody>
</table>

Electrical Connections

<table>
<thead>
<tr>
<th>Description</th>
<th>Pin 1</th>
<th>Pin 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-20 mA connections 2-wire</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | |
| 4-20 mA | 600 | |

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is (Feature A) and then add on options to create a string: (Feature A)+(Feature B)+(Feature C)

Order example: EA2-IS+90/20C+SS
Easidew Transmitter I.S., -90 to +20°C dp range, stainless steel sintered guard

Base Model (Feature A)

Easidew Transmitter I.S. EA2-IS

Range (Feature B)

-100 to +20°C (-148 to +68°F) dp range 100

Non-standard measurement range: v = zero value, w = full scale value, x = unit (C = °Cdp, F = °Fdp, P = ppmV) y = Pressure for ppm conversion in bar/psi, z = pressure unit (PG = psig, PA = psia, BG = barg, BA = bara) blank = 0 barg/0 psig

Protection (Feature C)

- **Standard HDPE guard (with protection against fine particulate (<10μm))** HD
- **SS sintered guard** SS
- **SS sintered guard with flanged mounting** FL
The Easidew PRO I.S. is a rugged intrinsically safe 2-wire dew-point transmitter for trace moisture measurement in liquids and gases. It is certified for use in IS Class 1 Div 1 Groups A,B,C and D, Ex II 1G EX ia IIC T4 and I.S. I 1 ABCD T4 (Ta = +60°C) hazardous area locations.

Highlights
- ±1°C (±1.8°F) accuracy
- Moisture in gases or liquids capability
- 2-wire connection
- Output configurable in ppmV and ppmW moisture content

Simple Operation
The Easidew PRO I.S. is easy to install and operate. It requires a 12 to 28 V DC supply and provides a linear 4-20 mA signal representing moisture content.

Moisture in Gases
The output can be configured by the customer, using simple software, to any range within -100 to +20°C (-148 to +68°F) dp, or 0-3,000 ppmV in gases. As the Easidew PRO I.S. responds to water vapor pressure in the gas sample, it will give the user an accurate determination of the actual dew-point at pressure up to 45 MPa (450 barg / 6500 psig). Flow rate is not critical to measurement accuracy (1 to 5 Nl/min (2.1 to 10.5 scfh)), though speed of response will be improved by operating at a higher sample flow.

Moisture in Liquids
In addition to its Moisture in Gases capabilities the Easidew PRO I.S. can be used to monitor moisture in non-polar liquids. It is factory programmed to provide an output in ppmW. This requires the saturation constants of the liquid to be programmed into the transmitter either at the factory or by the user, using the application software, available as a free download from www.michell.com
Easidew PRO I.S.

Electrical Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-20 mA</td>
</tr>
<tr>
<td>3</td>
<td>POWER</td>
</tr>
</tbody>
</table>

Accessories and Spare Parts

- Wall mounting bracket for Easidew PRO I.S.: EPR-BRK
- Cable entry adapter M20 to 1/2" NPT, brass: CEA-M20-NPT-B
- Cable entry adapter M20 to 1/2" NPT, SS: CEA-M20-NPT-SS
- Cable entry adapter M20 to 1/2" BSP, brass: CEA-M20-BSP-B
- Cable entry adapter M20 to 1/2" BSP, SS: CEA-M20-BSP-SS
- Hazardous area cable gland, brass ø3-8mm cable: CG-M20-B
- Hazardous area cable gland, SS ø3-8mm cable: CG-M20-SS
- SS sintered guard replacement: SSG
- KFD0-CS-EX1.50P galvanic isolator (for Easidew PRO I.S. - Pepperl & Fuchs): GI-PF-01
- SS sample block (5/8" UNF thread with 1/8" NPT ports): CSB
- 3/4"-16 UNF to 5/8" UNF male adapter, SS (Panametrics thread): APT-PAN
- 1/2" BSP to 5/8" UNF thread adapter: APT-BSP
- Communications kit for Easidew PRO I.S.: EPR-CK
- Adapter for EA2-CK for use with Easidew PRO I.S.: EA2-SAM
- Easidew Sampler (see Accessories Section for details): SFP-PF-10PK

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}

Order example: EPR-IS+0/2P-500PG
Easidew PRO I.S Transmitter, ATEX Certified, 2-wire, ATEX certified, with 0 - 2 ppmV output range at 500 psig

Base Model - for measurements in gas (Feature A)

- Easidew PRO I.S. Transmitter, ATEX certified with sintered guard

Range (Feature B)

-100 to +20°C (-148 to +68°F) dp range 100
-Non-standard measurement range: v = zero value, w = full scale value, x = unit (C = °Cdp, F=°Fdp, P=ppm, y = Pressure for ppm conversion in bar/psia, z = pressure unit (PG=psig, PA=psia, BG=bar, BA=bara) blank = 0 barg/0 psig)

Base Model - for measurements in liquids (Feature A)

- Easidew PRO I.S. Transmitter, ATEX certified with sintered guard

Range (Feature B)

- 0 - 3000 ppmw (standard) 0/3000
- Programmed user-supplied range (y = ppmw zero value, z = ppmw full scale value)

Liquid (Feature C)

- Programmed user-supplied CS values: 00
- Methane: 01
- Propane: 02
- Ethane: 03
- Propylene: 04
- Ethylene: 05
- Butane: 06
- Isobutane: 07
- Pentane: 08
- 1-Butene: 09
- Cyclopentane: 10
Easidew Online
Dew-Point Hygrometer

A panel- or bench-mounting hygrometer with digital display, analog and digital outputs and dual alarm feature, offering excellent reliability and repeatability.

Highlights
- Dew point or ppm moisture content
- Analog and digital outputs
- IP66 (NEMA 4) Sensor and IP65 (NEMA 12) Monitor (front panel only)
- Excellent sensor protection
- -100 to +20°C (-148 to +68°F) total dew-point range
- Dual alarms
- Clear and easy to read display

Technical Specifications

Performance

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td>-100 to +20°C (-148 to +68°F) dew point 0–3000 ppmv, ppm output or non-standard dew-point range must be specified at time of order</td>
</tr>
<tr>
<td>Accuracy (dp)</td>
<td>±2°C (±3.6°F) dew point</td>
</tr>
<tr>
<td>Response time</td>
<td>5 mins to T95 (dry to wet)</td>
</tr>
<tr>
<td>Repeatability</td>
<td>0.5°C (0.9°F) dew point</td>
</tr>
</tbody>
</table>

Electrical output/ input

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output signal</td>
<td>4–20 or 0–20 mA, maximum load resistance 500 Ω RS232</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>85 to 264 V AC, 50/60 Hz</td>
</tr>
<tr>
<td>Load resistance</td>
<td>Max 250 Ω @ 12 V / 500 Ω @ 24 V</td>
</tr>
<tr>
<td>Current consumption</td>
<td>60 mA max</td>
</tr>
</tbody>
</table>

Operating conditions

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating humidity</td>
<td>0–100% RH</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Sensor -40 to +60°C (-40 to +140°F) Monitor 0 to 50°C (+32 to +122°F)</td>
</tr>
</tbody>
</table>

Mechanical specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress protection</td>
<td>Monitor IP65 (NEMA 12) front panel only Sensor IP66 (NEMA 4)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Monitor 1/8 DIN case, 96 x 48 x 85mm (3.77 x 1.88 x 3.34”) incl clearance (wxhxd) Sensor 132 x 27 A/F mm (5.13 x 1.06”) (length x diameter across hex flats)</td>
</tr>
<tr>
<td>Filter</td>
<td>HDPE</td>
</tr>
<tr>
<td>Weight</td>
<td>150g (5.29oz)</td>
</tr>
<tr>
<td>Electrical connections</td>
<td>Sensor cell supplied Monitor front panel configuration of alarm points</td>
</tr>
<tr>
<td>Sensor cable</td>
<td>0.8m (2.6’) supplied as standard max 800m (2,600’)</td>
</tr>
<tr>
<td>Mains cable</td>
<td>2m (6.5’) cable supplied</td>
</tr>
</tbody>
</table>

Dimensions

![Dimensions Diagram]

Note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.
Easidew Online

Electrical Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>To sensor Blue cable</td>
<td>13</td>
<td>Output mA -</td>
</tr>
<tr>
<td>2</td>
<td>To sensor Green cable</td>
<td>14</td>
<td>Output mA +</td>
</tr>
<tr>
<td>3</td>
<td>To sensor Red cable</td>
<td>16</td>
<td>Alarm relay contact</td>
</tr>
<tr>
<td>4</td>
<td>Alarm relay contact 2 - N/O</td>
<td>17</td>
<td>Alarm relay contact</td>
</tr>
<tr>
<td>5</td>
<td>Alarm relay contact 2 - N/C</td>
<td>23</td>
<td>Power supply N</td>
</tr>
<tr>
<td>6</td>
<td>Alarm relay contact 2 - com</td>
<td>24</td>
<td>Power supply L</td>
</tr>
</tbody>
</table>

Accessories and Spare Parts

- Pack of 10 replacement HDPE guards
- SS sintered guard replacement
- Easidew communications kit for EA2
- SS sample block (5/8" UNF thread with 1/8" NPT ports)
- KFD0-CS-EX1.50P galvanic isolator (for Easidew PRO I.S. - Pepperl & Fuchs)
- 3/4"-16 UNF to 5/8" UNF male adapter, SS (Panametrics thread)
- G 1/2" to 5/8" UNF male adapter, SS (E&H or GEI thread)
- 1/2" BSP to 5/8" UNF thread adapter
- Cable, 0.8m (2.62’) length with fittings + additional cable
- Easidew Sampler (see Accessories Section for details)
- 10 pk particulate filter cartridges (for SS filter unit (9996061))
- 6mm (0.24") O.D thick walled PTFE sample tube
- EA2-HDPE
- SSG
- EA2-CK
- CSB
- GI-PF-01
- APT-PAN
- APT-GEI
- APT-BSP
- EA2-CAB-XX
- EA2-SAM
- SSF-PF-10PK
- PTFE-XX

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is (Feature A) and then add on options to create a string: (Feature A)+(Feature B)+(Feature C)+(Feature D)+(Feature E)

Order example: EA2-OL+100+HD+AC+SC08
Easidew Transmitter, -100 to +20°C (-148 to +68°F) dp range, HDPE guard, 85/265 V AC power supply & 0.8m (2.62’) cable with fittings
MDM25
Hand-Held Dew-Point Hygrometer

The MDM25 is a portable, battery-operated handmeter, and is available with a number of different probe configurations. It displays relative humidity, temperature and one calculated value, making this handmeter suitable for a wide range of applications. The user can choose to display either °C or °F.

Highlights
- Displays RH & T, plus dew point, absolute humidity and wet bulb temperature
- Simple to operate
- Long term stability: ±1% RH over 12 months

Technical Specifications

Performance
Measurement range (RH) 0 - 100% RH
Measurement & operating range (T)
- Fixed and Standard probe -20 to +80°C (-4 to +176°F)
- Sword probe -20 to +100°C (-4 to +212°F)
- Remote probe -20 to +150°C (-4 to +302°F)
Accuracy at 25°C (77°F)
- Humidity Fixed probe ±2% RH (10 - 90% RH)
- Remote probes ±2% RH (5 - 95% RH)
- Temperature ±0.2°C (±0.36°F)
Stability RH Sensor ±1% RH/year
Response time - RH Sensor <10 sec typical (for 90% of the step change)
Calculated variables Td, a, Tw

Electrical output/input
Supply voltage 4.5 V (3 x AA batteries - provide approximately 70 hours of operation)
Electrical connections M9 5-way triad connector

Mechanical specification
Ingress protection IP65 - Hand meter only
Handmeter housing material Molded polymer housing ABS + rubber surround
Weight
- Hand meter MDM25 300g
- Fixed probe MX 30g
- Standard probe TX 90g
- Sword probe SX 500g
- Round 300mm probe H3 380g
- Round 500mm probe H5 620g
Display resolution Graphic LCD 128 x 64 pixels
% RH, °C, °F, g/m³, °Cdp, °Fdp

Accessories and Spare Parts

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>19mm (0.75") slotted protection cap black</td>
<td>A000002</td>
</tr>
<tr>
<td>12mm (0.47") Slotted protection cap, black</td>
<td>A000003</td>
</tr>
<tr>
<td>19mm (0.75") PVDF filter</td>
<td>A000014</td>
</tr>
<tr>
<td>12mm (0.47") PVDF filter</td>
<td>A000017</td>
</tr>
<tr>
<td>19mm (0.75") mesh filter with protection cap, black</td>
<td>A000018</td>
</tr>
<tr>
<td>12mm (0.47") mesh filter with protection cap, black</td>
<td>A000021</td>
</tr>
<tr>
<td>12mm (0.47") Flat SS sintered dust filter</td>
<td>A000022</td>
</tr>
<tr>
<td>19mm (0.75") Arrow SS sintered filter 10um</td>
<td>A000023</td>
</tr>
<tr>
<td>12mm (0.47") Arrow 20 µm SS sintered filter</td>
<td>A000026</td>
</tr>
<tr>
<td>Rubber surround for hand meter case</td>
<td>A000400</td>
</tr>
<tr>
<td>Carrying case</td>
<td>A000401</td>
</tr>
<tr>
<td>Batteries (3 AA Alkaline cells)</td>
<td>A000402</td>
</tr>
<tr>
<td>MDM25 hand meter (body)</td>
<td>MDM25</td>
</tr>
<tr>
<td>Fixed probe</td>
<td>MDM-MX</td>
</tr>
<tr>
<td>Standard probe</td>
<td>MDM-TX</td>
</tr>
<tr>
<td>Sword type probe</td>
<td>MDM-SX</td>
</tr>
<tr>
<td>Remote high temperature probe 300mm (18")</td>
<td>MDM-H3</td>
</tr>
<tr>
<td>Remote high temperature probe, 500mm (19.6")</td>
<td>MDM-H5</td>
</tr>
</tbody>
</table>

You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT HKC
Humidity and Dew-Point Instruments

MDM25

Dimensions

Base Model (Feature A)
Relative humidity and temperature handheld device MDM25

Sensor Type (Feature B)

<table>
<thead>
<tr>
<th></th>
<th>MX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed probe</td>
<td></td>
</tr>
<tr>
<td>Standard probe</td>
<td>TX</td>
</tr>
<tr>
<td>Sword type probe</td>
<td>SX</td>
</tr>
<tr>
<td>Remote high temperature probe, 300mm (1.8")</td>
<td>H3</td>
</tr>
<tr>
<td>Remote high temperature probe, 500mm (19.6")</td>
<td>H5</td>
</tr>
</tbody>
</table>

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is (Feature A) and then add on options to create a string: (Feature A)+(Feature B)

Order example: MDM25+MX

Relative humidity and temperature handheld device with fixed probe (comes standard with 3 AA Alkaline batteries)

Special feature:
The display turns automatically when hand meter is positioned upside-down
The MDM300 High-Speed Dew-Point Hygrometer offers rapid spot check measurements of dew-point or moisture content, in a compact instrument packed with features and intelligent engineering.

An extremely fast response and accurate, stable measurement is complemented by an instrument which is easy to use, has data-logging and built-in sampling components as standard, and can be supplied with a range of accessories including a stand-alone sampling system and a practical carry case.

Highlights
- Repeatable fast measurements, each in less than 10 minutes for T95 to -70°C (-94°F)
- Long battery life with more than 48 hours of typical usage between charges
- Best in its class: 1°C (1.8°F) accuracy
- External device input 4-20 mA for dew-point, temperature or pressure transmitters
- Bluetooth connection for trouble-free data download
- Built-in basic sensor protection sampling system allowing measurements up to 400 barg (5800 psig)
- Easy operation

Technical Specifications

Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement technology</td>
<td>Michell ceramic sensor</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 1°C from -60 to +20°C (-76 to +68°F) dp</td>
</tr>
<tr>
<td></td>
<td>± 2°C from -100 to -60°C (-148 to -76°F) dp</td>
</tr>
<tr>
<td></td>
<td>± 0.2°C (0.3°F) temperature</td>
</tr>
<tr>
<td>Measurement range</td>
<td>Calibrated -100 to +20°C (-148 to +68°F) dp</td>
</tr>
<tr>
<td></td>
<td>Readings to +30°C dp</td>
</tr>
<tr>
<td>Measurement units</td>
<td>°C, °F, K dew point ppm, ppm, for air, N₂, H₂, CO₂, SF₆</td>
</tr>
<tr>
<td></td>
<td>Gas temperature: %RH, gm⁻³, kg⁻¹ (other options available)</td>
</tr>
<tr>
<td></td>
<td>Option: active pressure (bara/g, psig, MPa, KPa)</td>
</tr>
<tr>
<td>Resolution (display)</td>
<td>0.1 for all dp derived units and autoranging where appropriate, e.g. ppm</td>
</tr>
<tr>
<td>Resolution (measurement)</td>
<td>0.1°C dew point</td>
</tr>
<tr>
<td>Typical response speed</td>
<td>T95 in ≤10 minutes to -70°C (-94°F)</td>
</tr>
<tr>
<td>Repeatability had to be entered</td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>Better than 0.1°C (0.2°F)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.01°C (0.02°F) or better</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>0.05°C (0.1°F)</td>
</tr>
</tbody>
</table>

Electrical output/input

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary inputs</td>
<td>4-20 mA external input selectable as either dp, temperature or pressure</td>
</tr>
<tr>
<td>Battery type</td>
<td>NiMH 4.8V</td>
</tr>
<tr>
<td>Battery operating life</td>
<td>More than 48 hours of typical usage between charges</td>
</tr>
<tr>
<td>Battery charger</td>
<td>Intelligent charger (supplied)</td>
</tr>
</tbody>
</table>

Operating conditions

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating pressure range</td>
<td>35 MPa (350 barg / 5000 psig) max</td>
</tr>
<tr>
<td>Operating environment</td>
<td>Outdoors 0-100% RH condensing</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-20 to +50°C (~-4 to +122°F)</td>
</tr>
<tr>
<td>Storage/ transport temp</td>
<td>-40 to +70°C (~-40 to +158°F)</td>
</tr>
</tbody>
</table>

Mechanical specification

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Blue LCD graphical display</td>
</tr>
<tr>
<td>Enclosure type</td>
<td>Steel fiber-loaded high-impact polyamide 6</td>
</tr>
<tr>
<td>I P / NEMA rating</td>
<td>IP66 (NEMA 4)</td>
</tr>
<tr>
<td>Gas connections</td>
<td>1/8” NPT female (other options available)</td>
</tr>
<tr>
<td>Flow across sensor</td>
<td>0.2 to 2.0 NL/min</td>
</tr>
<tr>
<td>Filters</td>
<td>50 micron stainless steel sinter in the inlet port (other porosities available)</td>
</tr>
<tr>
<td>Gas wetted materials</td>
<td>316 stainless steel</td>
</tr>
<tr>
<td>Outline dimensions</td>
<td>218 x 170 x 90mm (8.6 x 6.7 x 3.5”) (dewxh)</td>
</tr>
<tr>
<td>Weight</td>
<td>1.35kg (2.98lbs)</td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Logging</td>
<td>8 megabytes; Log interval: 5 to 60 second; Logs per log file: Up to 10,000</td>
</tr>
<tr>
<td>Communications</td>
<td>(Wireless) Bluetooth™ range up to 5m (16.5ft)</td>
</tr>
<tr>
<td>Languages</td>
<td>English, Spanish, Portuguese, Italian, French, German</td>
</tr>
</tbody>
</table>

Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.
Accessories and Spare Parts

- Carry bag – for standard and I.S. instruments
- Swagelok gas fittings – various sizes available
- Cable for external dew-point sensor – various lengths available
- External temperature sensor – various cable lengths available
- External pressure sensor – various cable lengths available
- External dew-point sensor for standard instrument – versions for standard and I.S instruments available

Please contact us for a full list of accessories and spares with order codes and prices

Dimensions

- Height: 218mm (8.6")
- Width: 90mm (3.54")
- Depth: 170mm (6.69")

Order Codes

<table>
<thead>
<tr>
<th>Feature</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Model</td>
<td>MDM300-STD</td>
<td>Base unit</td>
</tr>
</tbody>
</table>
RM33 & 52
Relative Humidity and Temperature Transmitter, HVAC Room Monitor

The RM series of relative humidity and temperature transmitters offers a comprehensive range of output signals and measurement ranges. The transmitters are housed in a wall mounting enclosure making these instruments ideal for HVAC and building management applications.

Highlights
- Designed for low cost HVAC applications
- Quick installation: electrical rear connection with screw terminals
- Long term stability

Technical Specifications

Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range (RH)</td>
<td>0–100% RH</td>
</tr>
<tr>
<td>Measurement range (T)</td>
<td>0 to +50°C (+32 to +122°F)</td>
</tr>
<tr>
<td>Accuracy at 23°C (73°F)</td>
<td>Humidity: RM52: <±2% RH (10–90% RH)</td>
</tr>
<tr>
<td></td>
<td>RM33: <±3% RH (30–80% RH)</td>
</tr>
<tr>
<td>Temperature</td>
<td>RM52: ±0.2°C (±0.36°F)</td>
</tr>
<tr>
<td></td>
<td>RM33: ±0.3°C (±0.54°F)</td>
</tr>
<tr>
<td>Temperature influence</td>
<td>±0.05% RH/°C (±0.027% RH/°F)</td>
</tr>
<tr>
<td>Stability - RH Sensor</td>
<td>±1% RH/year</td>
</tr>
<tr>
<td>Response time - RH Sensor</td>
<td><10 sec typical (for 90% of the step change)</td>
</tr>
</tbody>
</table>

Electrical output/input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output signal</td>
<td>0–1, 0–5, 0–10 V</td>
</tr>
<tr>
<td></td>
<td>4–20 mA (2-wire)</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>14–35 V DC (for 0–5 / 0-10 V output)</td>
</tr>
<tr>
<td></td>
<td>4.5–35 V DC (for 0–1 V / 4-20 mA (RH only) output)</td>
</tr>
<tr>
<td></td>
<td>14–26 V AC (for all output ranges)</td>
</tr>
<tr>
<td>Supply voltage influence</td>
<td>±0.01% RH/V typical</td>
</tr>
</tbody>
</table>

Operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating humidity</td>
<td>Housing, Storage 10-90% RH</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Electronics</td>
</tr>
<tr>
<td></td>
<td>Storage 0 to +50°C (+32 to +122°F)</td>
</tr>
<tr>
<td></td>
<td>-40 to +75°C (-40 to +167°F)</td>
</tr>
<tr>
<td>Pt100/1000</td>
<td>Measurement range Pt100/1000: -50 to +200°C (-58 to +392°F)</td>
</tr>
<tr>
<td></td>
<td>Accuracy Pt100/1000: ±0.15%</td>
</tr>
</tbody>
</table>

PRT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress protection</td>
<td>N/A</td>
</tr>
<tr>
<td>Housing material</td>
<td>White molded polymer</td>
</tr>
<tr>
<td>Dimensions</td>
<td>91 x 91 x 25.5mm (3.58 x 3.58 x 1.00")</td>
</tr>
<tr>
<td>Filter</td>
<td>N/A</td>
</tr>
<tr>
<td>Weight</td>
<td>85g (3oz)</td>
</tr>
<tr>
<td>Electrical connections</td>
<td>Screw terminals</td>
</tr>
</tbody>
</table>

Dimensions
Electrical Connections

<table>
<thead>
<tr>
<th>Voltage output</th>
<th>mA output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>Pin 1</td>
</tr>
<tr>
<td>Pin 2</td>
<td>Pin 2</td>
</tr>
<tr>
<td>Pin 3</td>
<td>Pin 3</td>
</tr>
<tr>
<td>Pin 4</td>
<td>Pin 4</td>
</tr>
<tr>
<td>Output temperature +</td>
<td>Temperature sensor Pt100/Pt1000</td>
</tr>
<tr>
<td>Pin 5</td>
<td>Pin 5</td>
</tr>
<tr>
<td>Pin 6</td>
<td>Pin 6</td>
</tr>
<tr>
<td>Pin 7</td>
<td>Pin 7</td>
</tr>
<tr>
<td>Pin 8</td>
<td>Pin 8</td>
</tr>
<tr>
<td>Output RH +</td>
<td>Pin 4</td>
</tr>
<tr>
<td>Output RH -</td>
<td>Pin 2</td>
</tr>
<tr>
<td>Common ground</td>
<td>Pin 5</td>
</tr>
<tr>
<td>Power supply V+</td>
<td>Pin 6</td>
</tr>
<tr>
<td>Power supply V+</td>
<td>Pin 7</td>
</tr>
<tr>
<td>Humidity with temperature sensor</td>
<td></td>
</tr>
</tbody>
</table>

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}

Order example: RM33+3+T3

Relative humidity and temperature transmitter RM33, 0-10 V output, 0 to 50°C (+32 to +122°F) temperature range

Base Model {Feature A}
- Relative humidity and temperature transmitter - 1pt calibration with 3% accuracy
- **RM33**

Signal Output {Feature B}
- 4–20 mA (only possible with X, T4 or T5 in Feature C) | 2
- 0–10 V | 3
- 0–5 V | 4
- 0–1 V | 5

Temperature Signal {Feature C}
- 0 to +50°C (+32 to +122°F) | T3
- Pt100: -50 to +200°C (-58 to +392°F) | T4
- Pt1000: -50 to +200°C (-58 to +392°F) | T5
- Other output scaling available on request | TX
- RH signal only. No temperature output | X

Base Model {Feature A}
- Relative humidity and temperature transmitter 2pt calibration with 2% accuracy
- **RM52**

Signal Output {Feature B}
- 4–20 mA (only possible with X, T4 or T5 in Feature C) | 2
- 0–10 V | 3
- 0–5 V | 4
- 0–1 V | 5

Temperature Signal {Feature C}
- 0 to +50°C (+32 to +122°F) | T3
- Pt100: -50 to +200°C (-58 to +392°F) | T4
- Pt1000: -50 to +200°C (-58 to +392°F) | T5
- Other output scaling available on request | TX
- RH signal only. No temperature output | X
WM33 & 52
Relative Humidity and Temperature Transmitter, Wall Mount

The WM Series are wall-mounted units that have the ability to display and provide an output signal of % RH, dew point or absolute humidity and temperature. The WM Series offers excellent measurement accuracy and stability wherever a wall-mounted sensor is required.

Highlights
- WM33 is designed for low cost HVAC applications
- WM52 has digital technology and is designed for accurate measurements in a controlled environment
- Easy to re-calibrate to maintain high accuracy

Technical Specifications

Performance
- Measurement range (RH) 0–100% RH
- Measurement range (T) -20 to +80°C (-4 to +176°F)
- Accuracy at 23°C (73°F)
 - Humidity: WM52: ±2% RH (10–90% RH) WM33: ±3% RH (30–80% RH)
 - Temperature: WM52: ±0.2°C (±0.36°F) WM33: ±0.3°C (±0.54°F)
- Stability - RH Sensor ±1% RH/year
- Response time - RH Sensor <10 sec typical without filter (for 90% of the step change)

Electrical output/ input
- Output signal 4–20 mA, 0–1, 0–5, 0–10 V
- Supply voltage 14–30 V DC (for 0–5 / 0–10 V output)
 - 5–30 V DC (for 0–1 V & 4–20 mA output)

Operating conditions
- Operating temperature Probe, Housing Storage
 - -30 to +85°C (-22 to +185°F)
 - -40 to +85°C (-40 to +185°F)
- PRT
 - Measurement range Pt100/1000: -50 to +200°C (-58 to +392°F)
 - Accuracy Pt100/1000: ±0.15°C

Mechanical specification
- Housing material White molded polymer
- Weight 82g (2.89oz)
- Electrical connections Screw terminals

Alternative outputs
- Dew point -40 to +60°C (-40 to +140°F)
- Absolute humidity 0–200g/m³ (0–87.4gr/ft³)

Dimensions

Accessories and Spare Parts
- 19mm (0.75”) Slotted protection cap white A000001
- 19mm (0.75”) PVDF filter A000014
- 19mm (0.75”) PVDF filter with protection cap white A000016
- 19mm (0.75”) Mesh filter with protection cap black A000021
- 19mm (0.75”) Arrow stainless steel sintered filter 5/10/20 μm A000025/26/27
- 19mm (0.75”) Foil filter 2μm with protection cap white A000041
- 19mm (0.75”) Oleophobic foil filter 0.7μm with protection cap white A000043
- 19mm (0.75”) Foil filter 1.5μm with protection cap white A000045

You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT

www.michell.com
Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.
Humidity and Dew-Point Instruments

WM33 & 52

Electrical Connections

<table>
<thead>
<tr>
<th>3/4 wire V DC power supply voltage output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
</tr>
<tr>
<td>Pin 2</td>
</tr>
<tr>
<td>Pin 3</td>
</tr>
<tr>
<td>Pin 4</td>
</tr>
<tr>
<td>Pin 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 wire V DC power supply mA output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
</tr>
<tr>
<td>Pin 2</td>
</tr>
<tr>
<td>Pin 3</td>
</tr>
<tr>
<td>Pin 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3/4 wire with display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
</tr>
<tr>
<td>Pin 2</td>
</tr>
<tr>
<td>Pin 3</td>
</tr>
<tr>
<td>Pin 4</td>
</tr>
</tbody>
</table>

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}+{Feature D}+{Feature E}+{Feature F}.

Order example: WM52+5+DX+H+T3

Relative humidity and temperature transmitter WM52, 0-1 V output, with display, relative humidity configuration and 0 to 50°C temperature range.
The WM261 has been developed for high precision measurement of relative humidity and temperature. This transmitter is available with a range of outputs.

Highlights
- Designed for accurate measurement in a controlled environment
- Temperature output scaling configurable on request
- Linearization for a specific isotherm on request

Technical Specifications

Performance
- **Measurement range (RH)**: 0–100% RH
- **Measurement range (T)**: -20 to +80°C (-4 to +176°F)
- **Humidity Accuracy at 23°C (73°F)**: <±2% RH (5–95% RH)
- **Temperature Accuracy at 23°C (73°F)**: Pt100 1/3DIN direct ±0.2°C (±0.36°F)
- **Stability - RH sensor**: <±1% RH/year
- **Response time**: 10 sec typical (for 90% of the step change)

Electrical output/ input
- **Output signal (RH)** configurable on request
 - 4–20 mA
 - 0–1, 0–5, 0–10 V
- **Output signal (T)** configurable on request
 - 4–20 mA
 - 3-wire 1/3 DIN Pt100 direct
 - 0–1, 0–5, 0–10 V

Supply voltage
- **Output 4–20 mA**: V + = 12–30 V DC
- **Output 0–10 V**: V + = 15–30 V DC
- **Output 0–5 V**: V + = 10–30 V DC
- **Output 0–1 V**: V + = 8–30 V DC

Load resistance
- **Output 4–20 mA**: Rload < (Uv-9) / 0.02
- **Output 0–10 V**: R > 10 k Ω
- **Output 0–5 V**: R > 5 k Ω
- **Output 0–1 V**: R > 1 k Ω

Current consumption: 2 x 20 mA max

Operating conditions
- **Operating temperature**
 - Probe: -30 to +85°C (-22 to +185°F)
 - Housing: -30 to +70°C (-22 to +158°F)
 - Storage: -40 to +70°C (-40 to +158°F)

Mechanical specification
- **Ingress protection**: IP65 (NEMA 4 level)
- **Housing material**: PPO + POM
- **Dimensions**
 - Housing: 80 x 80 x 34mm (3.15 x 3.15 x 1.34”)
 - Probe: L=85mm, ø12mm (L=3.35”, ø0.47”)
- **Weight**: 100g (3.53oz)
- **Electrical connections**: Screw terminals

Accessories and Spare Parts
You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT HKC

Issue No: WM261 97184 V2 UK 1110
Electrical Connections

<table>
<thead>
<tr>
<th>Version mA output and Pt100 direct</th>
<th>Version mA output for RH and Temperature</th>
<th>Version V output and Pt100 direct</th>
<th>Version V output for RH and Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1 Output RH +</td>
<td>Pin 1 Output temperature +</td>
<td>Pin 1 Power supply V +</td>
<td>Pin 1 Power supply V +</td>
</tr>
<tr>
<td>Pin 2 Output RH -</td>
<td>Pin 2 Output Temperature -</td>
<td>Pin 2 Common ground</td>
<td>Pin 2 Common ground</td>
</tr>
<tr>
<td>Pin 3 Output RH +</td>
<td>Pin 3 Output RH +</td>
<td>Pin 3 Output RH +</td>
<td>Pin 3 Output Temperature +</td>
</tr>
<tr>
<td>Pin 4 Output RH -</td>
<td>Pin 4 Output RH -</td>
<td>Pin 4 Pt100 direct</td>
<td>Pin 4 Output RH +</td>
</tr>
<tr>
<td>Pin 5 Pt100 direct</td>
<td>Pin 5 Pt100 direct</td>
<td>Pin 5 Pt100 direct</td>
<td>Pin 5 Output RH +</td>
</tr>
</tbody>
</table>

Warning: Temperature channels Pin 1 and Pin 2 must be powered always.

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}+{Feature D}

Order example: WM261+A+1+Z10
Relative humidity transmitter WM261 with 4-20 mA output, Pt100 direct signal, noryl slotted cap and polyester PTFE filter.
The WM281 relative humidity transmitter includes the interchangeable Hygrosmart module. The interchangeable module lets you recalibrate the transmitter simply by replacing the sensor head with the Hygrosmart module. As a result, maintenance costs are greatly reduced and down-time is minimized.

Highlights
- Analog and digital output standard
- Based on the interchangeable Hygrosmart module
- Analog output signals selectable through software
- Metric or US measurement units selectable through software

Technical Specifications

Performance
- Measurement range (RH) 0–100% RH
- Measurement range (T) -30 to +70°C (-22 to +158°F)
- Accuracy at 23°C (73°F) Humidity ±±2% RH (5-95% RH)
- Accuracy at 23°C (73°F) Temperature ±0.4°C (+0.7°F)
- Stability – RH Sensor ±±1% RH/year
- Response time – RH Sensor <10 sec typical (for 90% of the step change)

Electrical output/input
- Output signal configurable on request
 - 0–1, 0–5, 0–10 V
 - 0–20 mA, 4–20 mA, Rs485
- Supply voltage 15 - 27 V AC / 18 - 38 V DC
- Load resistance Current output: R ≤ 500 Ω
- Power consumption 1.7 W

Operating conditions
- Operating temperature
 - Probe -30 to +85°C (-22 to +185°F)
 - Housing -30 to +70°C (-22 to +158°F)
 - Storage -40 to +70°C (-40 to +158°F)

Mechanical specification
- Ingress protection IP67
- Material
 - Housing Aluminum die casting
 - Probe Delrin
- Dimensions
 - Housing 120 x 120 x 49.5mm (4.72 x 4.72 x 1.94”)
 - Probe L=100mm, ø 19mm (L=3.93”, ø0.74”)
- Weight 450g (15.87oz)
- Electrical connections Screw terminals

Accessories and Spare Parts
- RS422/485 to PC (RS232) converter 330185
- USB cable/software for configuration F035263
- SS sintered filter H2
- SS sintered filter with teflon coating J2
- Delrin cap slotted with SS mesh filter K7
- Delrin cap slotted with PTFE filter, white Z7
- Hygrosmart with Pt100 output (RH = 0-1 V) 17-0-00-1
- You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT HKC

Dimensions

WM281 Digital Relative Humidity & Temperature Transmitter, Wall Mount
Electrical Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Supply V +</td>
</tr>
<tr>
<td>2</td>
<td>Power Supply V -</td>
</tr>
<tr>
<td>3</td>
<td>Output RS485 Ground</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>Output Channel 1 Temperature +</td>
</tr>
<tr>
<td>6</td>
<td>Output Channel 1 Ground</td>
</tr>
<tr>
<td>7</td>
<td>Output Channel 2 RH +</td>
</tr>
<tr>
<td>8</td>
<td>Output Channel 2 Ground</td>
</tr>
<tr>
<td>9</td>
<td>RS485 Data +</td>
</tr>
<tr>
<td>10</td>
<td>RS485 Data -</td>
</tr>
<tr>
<td>11</td>
<td>Not connected</td>
</tr>
<tr>
<td>12</td>
<td>Not connected</td>
</tr>
<tr>
<td>13</td>
<td>Output Channel 3 (not connected)</td>
</tr>
<tr>
<td>14</td>
<td>Output Channel 3 Ground (not connected)</td>
</tr>
</tbody>
</table>

Do not connect pin 2 (V -) to pin 4 (Ground)

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is **Feature A** and then add on options to create a string: **Feature A**+**Feature B**+**Feature C**+**Feature D**+**Feature E**

Order example: WM281+A+K7+N030+P070
Digital RH and temperature transmitter WM281, 4-20 mA output, delrin cap slotted with stainless steel mesh filter, temp range -30 to +70°C (-22 to +158°F)
The WM291 relative humidity transmitter includes the interchangeable Hygrosmart module. The interchangeable module lets you recalibrate the transmitter simply by replacing the sensor head with the Hygrosmart module. As a result, maintenance costs are greatly reduced and down-time is minimized.

Highlights
- Three outputs
- Analog and digital output standard
- Based on the interchangeable Hygrosmart module
- Analog output signals selectable through software
- Metric or US measurement units selectable through software
- Available with calculated absolute humidity, dew-point, frost point, mixing ratio or specific enthalpy output

Dimensions

Technical Specifications

Performance
- **Measurement range (RH)**: 0–100% RH
- **Measurement range (T)**: -30 to +70°C (-22 to +158°F)
- **Accuracy at 23°C (73°F)**
 - Humidity: ±±2% RH (5-95% RH)
 - Temperature: ±0.4°C (±0.72°F)
- **Stability - RH Sensor**: <±1% RH/year
- **Response time - RH Sensor**: <10 sec typical (for 90% of the step change)

Electrical output/input
- **Output signal**: 0–1, 0–5, 0–10 V
 0–20 mA, 4–20 mA, RS485
- **Supply voltage**: 15 - 27 V AC / 18 - 38 V DC
- **Load resistance**: Current output: R ≤ 500 Ω
- **Power consumption**: 1.7 W

Operating conditions
- **Operating temperature**
 - Probe: -30 to +85°C (-22 to +185°F)
 - Housing: -20 to +70°C (-4 to +158°F)
 - Storage: -30 to +70°C (-22 to +158°F)

Mechanical specification
- **Ingress protection**: IP65 (NEMA 4 level)
- **Material**
 - Housing: Aluminum die casting
 - Probe: Delrin
- **Dimensions**
 - Housing: 120 x 120 x 49.5mm (4.72 x 4.72 x 1.94”)
 - Probe: L=100mm, ø19mm (L=3.93", ø0.74")
- **Weight**: 450g (15.87oz)
- **Electrical connections**: Screw terminals
- **Display resolution**: LCD, 2 lines x 16 characters

Accessories and Spare Parts
- RS422/485 to PC (RS232) converter: 330185
- USB cable/software for configuration: F035263
- SS sintered filter: H2
- SS sintered filter with teflon coating: J2
- Delrin cap slotted with SS mesh filter: K7
- Delrin cap slotted with PTFE filter, white: Z7
- Hygrosmart with Pt100 output (RH = 0-1 V): 17-0-00-1

You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT.
Electrical Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Supply V +</td>
<td>8</td>
<td>Output Channel 2 Ground</td>
</tr>
<tr>
<td>2</td>
<td>Power Supply V -</td>
<td>9</td>
<td>RS485 Data +</td>
</tr>
<tr>
<td>3</td>
<td>Output RS485 Ground</td>
<td>10</td>
<td>RS485 Data -</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
<td>11</td>
<td>Not connected</td>
</tr>
<tr>
<td>5</td>
<td>Output Channel 1 Temperature +</td>
<td>12</td>
<td>Not connected</td>
</tr>
<tr>
<td>6</td>
<td>Output Channel 1 Ground</td>
<td>13</td>
<td>Output Channel 3 (optional)</td>
</tr>
<tr>
<td>7</td>
<td>Output Channel 2 RH +</td>
<td>14</td>
<td>Output Channel 3 Ground (optional)</td>
</tr>
</tbody>
</table>

Do not connect pin 2 (V-) to pin 4 (Ground)

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}+{Feature D}+{Feature E}+{Feature F}

Order example: WM291+A+0+K7+N030+P070

Digital RH and temperature transmitter WM291 for wall-mounting, 4-20 mA output, dp display -40 to +100ºC, Delrin cap slotted, with stainless steel mesh filter, temp range -30 to +70ºC (-22 to +158ºF)
Humidity and Dew-Point Instruments

DT269
Digital Relative Humidity & Temperature Transmitter, Duct Mount

The DT269 transmitter has a 17000 Hygrosmart module. Thanks to this solution, the sensor can be changed on site quickly and simply, providing greatly reduced maintenance costs. The transmitter does not need recalibration after the sensor is changed.

Highlights
• Designed for accurate measurement in a controlled environment
• Based on the interchangeable Hygrosmart module
• Temperature output scaling configurable on request
• Linearization for a specific isotherm on request

Performance

<table>
<thead>
<tr>
<th>Specification</th>
<th>Range/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range (RH)</td>
<td>0–100% RH</td>
</tr>
<tr>
<td>Measurement range (T)</td>
<td>-20 to +80°C (-4 to +176°F)</td>
</tr>
<tr>
<td>Accuracy at 23°C (73°F)</td>
<td>±1% RH (5–95% RH)</td>
</tr>
<tr>
<td>Accuracy at 23°C (73°F) Humidity</td>
<td>±2% RH</td>
</tr>
<tr>
<td>Temperature</td>
<td>Pt100 1/3 DIN direct ±0.2°C (±0.36°F)</td>
</tr>
<tr>
<td>Stability - RH Sensor</td>
<td><±1% RH/year</td>
</tr>
<tr>
<td>Response time - RH Sensor</td>
<td><10 sec typical (for 90% of the step change)</td>
</tr>
</tbody>
</table>

Electrical output/input

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output signal (RH) configurable on request</td>
<td>4–20 mA, 0–1, 0–5, 0–10 V</td>
</tr>
<tr>
<td>Output signal (T) configurable on request</td>
<td>4–20 mA, 3-wire 1/3 DIN Pt100 direct, 0–1, 0–5, 0–10 V</td>
</tr>
<tr>
<td>Supply voltage Output 4–20 mA:</td>
<td>V+ = 12–30 V DC</td>
</tr>
<tr>
<td></td>
<td>V- = 0 V</td>
</tr>
<tr>
<td>Output 0–10 V:</td>
<td>V+ = 15–30 V DC</td>
</tr>
<tr>
<td></td>
<td>V- = 0 V</td>
</tr>
<tr>
<td>Output 0–5 V:</td>
<td>V+ = 10–30 V DC</td>
</tr>
<tr>
<td></td>
<td>V- = 0 V</td>
</tr>
<tr>
<td>Output 0–1 V:</td>
<td>V+ = 8–30 V DC</td>
</tr>
<tr>
<td></td>
<td>V- = 0 V</td>
</tr>
<tr>
<td>Load resistance</td>
<td>Output 4–20 mA: R > 10 kΩ</td>
</tr>
<tr>
<td></td>
<td>Output 0–10 V: R > 5 kΩ</td>
</tr>
<tr>
<td></td>
<td>Output 0–5 V: R > 1 kΩ</td>
</tr>
<tr>
<td></td>
<td>Output 0–1 V:</td>
</tr>
<tr>
<td>Current consumption</td>
<td>2 x 20 mA max</td>
</tr>
</tbody>
</table>

Operating conditions

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>-30 to +85°C (-22 to +185°F)</td>
</tr>
<tr>
<td>Housing</td>
<td>-30 to +70°C (-22 to +158°F)</td>
</tr>
<tr>
<td>Storage</td>
<td>-40 to +70°C (-40 to +158°F)</td>
</tr>
</tbody>
</table>

Mechanical specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress protection</td>
<td>IP65 (NEMA 4 level)</td>
</tr>
<tr>
<td>Material</td>
<td>PPO + POM</td>
</tr>
<tr>
<td>Dimensions</td>
<td>80 x 80 x 34.5mm (3.14 x 3.14 x 1.35")</td>
</tr>
<tr>
<td>Housing</td>
<td>L=85/178mm, ø19mm (L=3.35/7.01", ø0.75")</td>
</tr>
<tr>
<td>Probe</td>
<td>Weight</td>
</tr>
<tr>
<td>Electrical connections</td>
<td>Screw terminals</td>
</tr>
</tbody>
</table>

Accessories and Spare Parts

<table>
<thead>
<tr>
<th>Specification</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI mounting flange for ø19mm (0.75") SS probes</td>
<td>FLA019</td>
</tr>
<tr>
<td>SS sintered filter</td>
<td>H4</td>
</tr>
<tr>
<td>ABS cap slotted with PTFE filter, white</td>
<td>Z2</td>
</tr>
<tr>
<td>Hygrosmart without Pt100 output (RH = 0–1 V)</td>
<td>I7-0-00-0</td>
</tr>
<tr>
<td>Hygrosmart with Pt100 output (RH = 0–1 V)</td>
<td>I7-0-00-1</td>
</tr>
</tbody>
</table>

You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT.
Electrical Connections

<table>
<thead>
<tr>
<th>Version mA output and Pt100 direct</th>
<th>Version mA output for RH and Temperature</th>
<th>Version V output and Pt100 direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1 Output RH +</td>
<td>Pin 1 Output temperature +</td>
<td>Pin 1 Power supply V +</td>
</tr>
<tr>
<td>Pin 2 Output RH -</td>
<td>Pin 2 Output Temperature -</td>
<td>Pin 2 Common ground</td>
</tr>
<tr>
<td>Pin 3</td>
<td>Pin 3 Output RH +</td>
<td>Pin 3 Output RH +</td>
</tr>
<tr>
<td>Pin 4 Pt100 direct</td>
<td>Pin 4 Output RH -</td>
<td>Pin 4 Power supply V +</td>
</tr>
<tr>
<td>Pin 5</td>
<td></td>
<td>Pin 5 Common ground</td>
</tr>
</tbody>
</table>

Warning: Temperature channels Pin 1 and Pin 2 must be powered always.

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}+{Feature D}+{Feature E}.

Order example: DT269+A+4+E0+H4

Digital RH and temperature transmitter DT269, 4-20 mA output, -30 to +20°C (-22 to +68°F) temp range, 160mm (6.30") probe length, stainless steel sintered filter

Base Model (Feature A)

Digital RH and temperature transmitter DT269

Signal Output (Feature B)

- 4-20 mA: A
- 0-10 V: B
- 0-5 V: C
- 0-1 V: D

Temperature Signal (Feature C)

- No temperature output: 0
- Pt100 direct: 1
- -30 to +70°C (-22 to +158°F): 3
- -30 to +20°C (-22 to +68°F): 4
- 0 to +50°C (+32 to +122°F): 5
- -20 to +80°C (-4 to +176°F): 6
- Other output scaling available on request: TX

Filter (Feature E)

- SS sintered filter: H4
- ABS cap slotted with PTFE filter, white: 22

Length (Feature D)

- 160mm (6.29") probe length: E0
- 290mm (11.41") probe length: E1
DT722
Rugged Industrial Relative Humidity and Temperature Transmitter, Duct Mount

The DT722 is a rugged industrial relative humidity and temperature transmitter designed for process applications where accurate, stable measurement and control of humidity and temperature is required.

Highlights
- Designed for accurate measurement in a harsh environment
- Can withstand temperatures up to 150°C (300°F)
- Stainless steel housing
- Calculated moisture signal output, optional

Performance

<table>
<thead>
<tr>
<th>Measurement range (RH)</th>
<th>0–100% RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range (T)</td>
<td>-40 to +150°C (-40 to +302°F)</td>
</tr>
<tr>
<td>Accuracy at 25°C (77°F) Humidity</td>
<td><±2% RH (5-95% RH)</td>
</tr>
<tr>
<td>Accuracy at 25°C (77°F) Temperature</td>
<td>±0.2°C (±0.36°F) typical</td>
</tr>
<tr>
<td>Stability - RH Sensor</td>
<td>±1% RH/year</td>
</tr>
<tr>
<td>Response time - RH Sensor</td>
<td><10 sec typical (for 90% of the step change)</td>
</tr>
</tbody>
</table>

Electrical output/ input

<table>
<thead>
<tr>
<th>Output signal</th>
<th>4–20 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>8–35 V DC</td>
</tr>
<tr>
<td>Supply voltage influence</td>
<td>±0.01% RH/V typical</td>
</tr>
</tbody>
</table>

Operating conditions

Operating temperature Probe	-40 to +150°C (-40 to +302°F)
Housing	-30 to +70°C (-22 to +158°F)
Storage	-40 to +75°C (-40 to +167°F)

Mechanical specification

Ingress protection	IP65 (NEMA 4 level)
Housing material	Stainless steel
Weight	200mm: 800g (7.87": 28.22oz)
	300mm: 900g (11.81": 31.75oz)
	500mm: 1040g (19.69": 2.29lb)
Electrical connections	4 pin, M12

Dimensions

Accessories and Spare Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>19mm (0.75") Slotted protection cap black</td>
<td>A000002</td>
</tr>
<tr>
<td>19mm (0.75") PVDF filter</td>
<td>A000014</td>
</tr>
<tr>
<td>19mm (0.75") PVDF filter w/ protection cap black</td>
<td>A000015</td>
</tr>
<tr>
<td>19mm (0.75") Mesh filter w/ protection cap black</td>
<td>A000021</td>
</tr>
<tr>
<td>19mm (0.75") Arrow SS sintered filter 5μm / 10μm / 20μm</td>
<td>A000025/26/27</td>
</tr>
<tr>
<td>19mm (0.75") connector, no cable, w/screw terminal</td>
<td>A000030</td>
</tr>
<tr>
<td>19mm (0.75") Connector, with cable (customer spec length)</td>
<td>A000030XM</td>
</tr>
<tr>
<td>19mm (0.75") connector with 2m (6.5") cable</td>
<td>A000031</td>
</tr>
<tr>
<td>19mm (0.75") connector with 5m (16") cable</td>
<td>A000032</td>
</tr>
<tr>
<td>19mm (0.75") Foil filter 2μm w/protection cap black</td>
<td>A000040</td>
</tr>
<tr>
<td>19mm (0.75") Oleophobic foil filter 0.7μm with protection cap black</td>
<td>A000042</td>
</tr>
<tr>
<td>19mm (0.75") Foil filter 1.5μm w/protection cap black</td>
<td>A000044</td>
</tr>
<tr>
<td>3/4" NPT SS adj. fitting for SS probes</td>
<td>A000100</td>
</tr>
<tr>
<td>Al mounting flange for ø19mm (0.75") SS probes (outside ø80mm (3.15"))</td>
<td>A000110</td>
</tr>
</tbody>
</table>

You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT.

Issue No: DT7722_97191_V2_UK_1110
Electrical Connections

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable</td>
<td>Pin</td>
<td>White</td>
<td>Pin 1</td>
<td>Output RH +</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>Pin 3</td>
<td>Green</td>
<td>Pin 4</td>
<td>Output T +</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Pin 2</td>
<td></td>
<td></td>
<td>Output T -</td>
<td></td>
</tr>
</tbody>
</table>

Connect RH + with T + by user.

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}+{Feature D}+{Feature E}+{Feature F}+{Feature G}

Order example: DT722+SX+A+HT0+03+CA+F02
RH & temperature transmitter DT722, no display, Output 1 - calc absolute humidity, Output 2 - temp output 0 to +100ºC (+32 to +212ºF), 300mm (11.81") probe length, no cable, 19mm slotted protection cap black

Base Model {Feature A}
- RH & temperature transmitter DT722

Display {Feature B}
- Display SD
- No display SX

Moisture Signal {Feature C}
- RH H
- Calculated dp temp (Range (Td) -40 to +60ºC (-40 to +140ºF) - Only possible with Temp Signal T1) D
- Calc absolute humidity (Abs) (Range Abs from 0-200g/m3 - Only possible with Temp Signal T1) A
- Calculated wetbulb temp (Range (Tw) -40 to +60ºC (-40 to +140ºF) - Only possible with Temp Signal T1) W

Temperature Signal {Feature D}
- 0 to +100ºC (+32 to +212ºF) HT0
- -40 to +150ºC (-40 to +302ºF) HTS
- Other output scaling available on request TX

Length {Feature E}
- 200mm (7.87") probe length 02
- 300mm (11.81") probe length 03
- 500mm (19.69") probe length 05
- 900mm (35.43") probe length 09
- 1500mm (50.06") probe length 15

Filter {Feature G}
- 19mm (0.75") slotted protection cap black F02
- 19mm (0.75") PVDF filter with protection cap black F15
- 19mm (0.75") Mesh filter with protection cap, black F21
- 19mm (0.75") Arrow SS sintered filter 5μm F25
- 19mm (0.75") Arrow SS sintered filter 10μm F26
- 19mm (0.75") Arrow SS sintered filter 20μm F27
- 19mm (0.75") Foil filter 2μm with protection cap black F40
- 19mm (0.75") Oleophobic foil filter 0.7μm with protection cap black F42
- 19mm (0.75") Foil filter 1.5μm w/protection cap black F44

Cable Length {Feature F}
- No cable CA
- 19mm (0.75") connector, no cable, w/screw terminal CB
- 19mm (0.75") connector with 2m (6.5’) cable CC
- 19mm (0.75") connector with 5m (16’) cable CD
The DT282 relative humidity transmitter includes the interchangeable Hygrosmart module. The interchangeable module lets you recalibrate the transmitter simply by replacing the sensor head with the Hygrosmart module. As a result, maintenance costs are greatly reduced and down-time is minimized.

Highlights
- Analog and digital output standard
- Based on the interchangeable Hygrosmart module
- Analog output signals selectable through software
- Metric or US measurement units selectable through software

Technical Specifications

Performance
- Measurement range (RH) 0–100% RH
- Measurement range (T) -30 to +70°C (-22 to +158°F)
- Accuracy at 23°C (73°F) Humidity <±2% RH (5–95% RH)
- Accuracy at 23°C (73°F) Temperature ±0.4°C (±0.72°F)
- Stability - RH Sensor <±1% RH/year
- Response time - RH Sensor <10 sec typical (for 90% of the step change)

Electrical output/input
- Output signal 0–1, 0–5, 0–10 V 0–20 mA, 4–20 mA, RS485
- Supply voltage 15 - 27 V AC / 18 - 38 V DC
- Load resistance Current output: R ≤ 500 Ω
- Power consumption 1.7 W

Operating conditions
- Operating temperature Probe -30 to +85°C (-22 to +185°F)
- Housing -30 to +70°C (-22 to +158°F)
- Storage -40 to +70°C (-40 to +158°F)

Ingress protection
- IP67

Material
- Housing Aluminum die casting
- Probe Stainless steel AISI 316

Dimensions
- Housing 120 x 120 x 49.5mm (4.72 x 4.72 x 1.94”)
- Probe L=250/500mm ø19mm (L=9.84/19.68” ø0.74”)
- Weight 450g (15.87oz)

Electrical connections
- Screw terminals

Accessories and Spare Parts
- RS422/485 to PC (RS232) converter
- USB cable/software for configuration
- AI mounting flange for ø19mm (0.75”) SS probes
- SS sintered filter
- SS sintered filter with teflon coating
- AISI 316 cap slotted with SS mesh filter
- SS cap slotted with PTFE filter
- Hygrosmart with Pt100 output (RH = 0-1 V)
- You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT HKC

Issue No: DT282_97189_V2_UK_1110

Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.
Electrical Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th></th>
<th>Pin</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Supply V +</td>
<td>8</td>
<td>Output Channel 2 Ground</td>
</tr>
<tr>
<td>2</td>
<td>Power Supply V -</td>
<td>9</td>
<td>RS485 Data +</td>
</tr>
<tr>
<td>3</td>
<td>Output RS485 Ground</td>
<td>10</td>
<td>RS485 Data -</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
<td>11</td>
<td>Not connected</td>
</tr>
<tr>
<td>5</td>
<td>Output Channel 1 Temperature +</td>
<td>12</td>
<td>Not connected</td>
</tr>
<tr>
<td>6</td>
<td>Output Channel 1 Ground</td>
<td>13</td>
<td>Output Channel 3 (not connected)</td>
</tr>
<tr>
<td>7</td>
<td>Output Channel 2 RH +</td>
<td>14</td>
<td>Output Channel 3 Ground (not connected)</td>
</tr>
</tbody>
</table>

Do not connect pin 2 (V -) to pin 4 (Ground)

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}+{Feature D}+{Feature E}+{Feature F}

Order example: DT282+A+01+K6+N030+P070
Digital RH and temperature transmitter DT282, 4-20 mA output, stainless steel probe 250mm (9.84”), AISI 316 cap slotted with stainless steel mesh filter, temp range -30 to +70ºC (-22 to +158ºF)

Base Model (Feature A)
Digital RH and temperature transmitter DT282

Signal Output (Feature B)
4–20 mA A
0–10 V B
0–5 V C
0–1 V D
0–20 mA E

Length (Feature C)
250mm (9.84”) 01
500mm (19.68”) 02

Temp Low (Feature E)
0ºC (+32°F) 0000
-20ºC (-4°F) N020
-30ºC (-22°F) N030

Temp High (Feature F)
+20ºC (+68°F) P020
+30ºC (+86°F) P030
+50ºC (+122°F) P050
+70ºC (+158°F) P070
Other output scaling available on request XXXX

Filter (Feature D)
SS sintered filter H2
SS sintered filter with teflon coating J2
AISI 316 cap slotted with SS mesh filter K6
SS cap slotted with PTFE filter Z6
DT284
Digital Relative Humidity and Temperature Transmitter - Duct Mount

The DT284 relative humidity transmitter uses the Hygrosmart module, integrated in the interchangeable probe. This device can be used in high-temperature applications due to the remote placing of the measurement element and its small overall size.

Highlights
- 12mm (0.47") probe diameter
- Analog and digital output standard
- Interchangeable probe
- Analog output signals selectable through software
- Metric or US measurement units selectable through software
- Can withstand temperatures up to 140°C (284°F)

Technical Specifications

Performance
- Measurement range (RH) 0–100% RH
- Measurement range (T) -30 to +140°C (-22 to +284°F)
- Accuracy at 23°C (73°F)
 - Humidity <±2% RH (5–95% RH)
 - Temperature ±0.4°C (±0.72°F)
- Stability - RH Sensor ±1% RH/year
- Response time - RH Sensor <10 sec typical (for 90% of the step change)

Electrical output/ input
- Output signal 0–1, 0–5, 0–10 V
 - 0–20 mA, 4–20 mA, RS485
- Supply voltage 15 - 27 V AC / 18 - 38 V DC
- Load resistance Current output: R ≤ 500 Ω
- Power consumption 1.7 W

Operating conditions
- Operating temperature
 - Probe -30 to +140°C (-22 to +284°F)
 - Housing -30 to +70°C (-22 to +158°F)
 - Storage -40 to +70°C (-40 to +158°F)

Mechanical specification
- Ingress protection IP67
- Material
 - Housing Aluminum die casting
 - Probe Stainless steel
- Dimensions
 - Housing 120 x 120 x 49.5mm (4.72 x 4.72 x 1.94")
 - Probe L=250/500mm ø12mm
 - (L=9.84/19.68" ø0.47")
- Weight 450g (15.87oz)
- Electrical connections Screw terminals

Accessories and Spare Parts
- SS probe 250mm (9.84"), SS cover & mesh filter USTE003
- SS probe 500mm (19.69"), SS cover & mesh filter USTE010
- SS probe 250mm (9.84"), SS cover & sinter filter USTE011
- SS probe 500mm (19.69"), SS cover & sinter filter USTE012
- PEEK probe 250mm (9.84") & cover, SS mesh filter USTE013
- PEEK probe 500mm (19.69") & cover, SS mesh filter USTE014
- RS422/485 to PC (RS232) converter 330185
- USB cable/software for configuration F035263
- Al mounting flange for ø12mm (0.47") SS probes FLA012
- SS sintered filter H3
- SS sintered filter with teflon coating J3
- SS mesh filter K8
- PEEK protection cap with SS mesh filter K9
- You can check your hygrometer with the Control Kit HKC
 which is based on the principle of non-saturated salt solutions.
 Refer to technical data sheet CONTROL KIT

Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.

Issue No: DT284_97190_V2_UK_1110

www.michell.com
Electrical Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Electrical Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Supply V +</td>
</tr>
<tr>
<td>2</td>
<td>Power Supply V -</td>
</tr>
<tr>
<td>3</td>
<td>Output RS485 Ground</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>Output Channel 1 Temp +</td>
</tr>
<tr>
<td>6</td>
<td>Output Channel 1 Ground</td>
</tr>
<tr>
<td>7</td>
<td>Output Channel 2 RH +</td>
</tr>
<tr>
<td>8</td>
<td>Output Channel 2 Ground</td>
</tr>
<tr>
<td>9</td>
<td>RS485 Data +</td>
</tr>
<tr>
<td>10</td>
<td>RS485 Data -</td>
</tr>
<tr>
<td>11</td>
<td>Not connected</td>
</tr>
<tr>
<td>12</td>
<td>Not connected</td>
</tr>
<tr>
<td>13</td>
<td>Output Channel 3 (not connected)</td>
</tr>
<tr>
<td>14</td>
<td>Output Channel 3 Ground (not connected)</td>
</tr>
</tbody>
</table>

Do not connect pin 2 (V -) to pin 4 (Ground)

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is (Feature A) and then add on options to create a string: (Feature A)+(Feature B)+(Feature C)+(Feature D)+(Feature E)

Order example: DT284+A+11+N030+P140
Digital RH and temperature transmitter DT284, 4-20 mA output, stainless steel probe 250mm (9.84”), stainless steel cover and sintered filter, temp range -30 to +140ºC (-22 to +284ºF)

<table>
<thead>
<tr>
<th>Feature A</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT284</td>
<td>Digital RH and temperature transmitter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature B</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-20 mA</td>
<td>A</td>
</tr>
<tr>
<td>0–10 V</td>
<td>B</td>
</tr>
<tr>
<td>0–5 V</td>
<td>C</td>
</tr>
<tr>
<td>0–1 V</td>
<td>D</td>
</tr>
<tr>
<td>0–20 mA</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature C</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS probe 250mm (9.84”), SS cover & mesh filter</td>
<td>3</td>
</tr>
<tr>
<td>SS probe 500mm (19.69”), SS cover & mesh filter</td>
<td>10</td>
</tr>
<tr>
<td>SS probe 250mm (9.84”), SS cover & sinter filter</td>
<td>11</td>
</tr>
<tr>
<td>SS probe 500mm (19.69”), SS cover & sinter filter</td>
<td>12</td>
</tr>
<tr>
<td>PEEK probe 250mm (9.84”) & cover, SS mesh filter</td>
<td>13</td>
</tr>
<tr>
<td>PEEK probe 500mm (19.69”) & cover, SS mesh filter</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature D</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp High</td>
<td>P020 (+20ºC (+68°F))</td>
</tr>
<tr>
<td></td>
<td>P030 (+30ºC (+86°F))</td>
</tr>
<tr>
<td></td>
<td>P050 (+50ºC (+122°F))</td>
</tr>
<tr>
<td></td>
<td>P070 (+70ºC (+158°F))</td>
</tr>
<tr>
<td></td>
<td>P100 (+100ºC (+212°F))</td>
</tr>
<tr>
<td></td>
<td>P140 (+140ºC (+284°F))</td>
</tr>
<tr>
<td>Temp Low</td>
<td>0000 (0ºC (+32°F))</td>
</tr>
<tr>
<td></td>
<td>N020 (-20ºC (+4°F))</td>
</tr>
<tr>
<td></td>
<td>N030 (-30ºC (-22°F))</td>
</tr>
<tr>
<td>Other output scaling available on request</td>
<td>XXXX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature E</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C (32°F)</td>
<td>0000</td>
</tr>
<tr>
<td>-20°C (-4°F)</td>
<td>N020</td>
</tr>
<tr>
<td>-30°C (-22°F)</td>
<td>N030</td>
</tr>
</tbody>
</table>
WR283
Digital Relative Humidity and Temperature Transmitter - Remote Probe for High Temperatures

The WR283 relative humidity sensor uses the Hygrosmart module, integrated in the interchangeable probe and cable. This device can be used in high-temperature applications thanks to the remote placing of the measurement element and its small overall size. The interchangeable probe allows for simple recalibration and lower maintenance costs.

Highlights
- Analog and digital output standard
- Interchangeable probe
- Analog output signals selectable through software
- Metric or US measurement units selectable through software
- Can withstand temperatures up to 200°C (392°F)

Dimensions

Technical Specifications

Performance
- Measurement range (RH) 0–100% RH
- Measurement range (T) -30 to +200°C (-22 to +392°F)
- Accuracy at 23°C (73°F) Humidity <±2% RH (5–95% RH)
- Accuracy at 23°C (73°F) Temperature ±0.4°C (±0.72°F)
- Stability - RH Sensor <±1% RH/year
- Response time - RH Sensor <10 sec typical (for 90% of the step change)

Electrical output/ input
- Output signal 0–1, 0–5, 0–10 V 0–20 mA, 4–20 mA, RS485
- Supply voltage 15 - 27 V AC / 18 - 38 V DC
- Load resistance Current output: R ≤ 500 Ω
- Power consumption 1.7 W

Operating conditions
- Operating temperature
 Probe -30 to +200°C (-22 to +392°F)
 Housing -30 to +70°C (-22 to +158°F)
 Storage -40 to +70°C (-40 to +158°F)

Mechanical specification
- Ingress protection IP67
- Material
 Housing Aluminum die casting
 Probe Stainless steel
- Dimensions
 Housing 120 x 120 x 51mm (4.72 x 4.72 x 2.00”)
 Probe L=134mm, ø12mm (L=5.27”, ø0.47”)
- Weight 450g (15.87oz)
- Electrical connections Screw terminals

Accessories and Spare Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS422/485 to PC (RS232) converter</td>
<td>330185</td>
</tr>
<tr>
<td>USB cable/software for configuration</td>
<td>F035263</td>
</tr>
<tr>
<td>Al mounting flange for ø12mm (0.47”) SS probes</td>
<td>FLA012</td>
</tr>
<tr>
<td>SS sintered filter</td>
<td>H3</td>
</tr>
<tr>
<td>SS sintered filter with teflon coating</td>
<td>J3</td>
</tr>
<tr>
<td>SS mesh filter</td>
<td>K8</td>
</tr>
<tr>
<td>PEEK protection cap with SS mesh filter</td>
<td>K9</td>
</tr>
<tr>
<td>SS probe, cover & mesh filter, 2m (6.56’) cable</td>
<td>USTE002</td>
</tr>
<tr>
<td>SS probe, cover & mesh filter, 2m + 2m extension (6.56’ + 6.56’) cable</td>
<td>USTE005</td>
</tr>
<tr>
<td>SS probe, cover & sinter filter, 2m (6.56’) cable</td>
<td>USTE006</td>
</tr>
<tr>
<td>SS probe, cover & sinter filter, 2m + 2m extension (6.56’ + 6.56’) cable</td>
<td>USTE007</td>
</tr>
<tr>
<td>PEEK probe, cover, SS mesh filter, 2m (6.56’) cable</td>
<td>USTE008</td>
</tr>
<tr>
<td>PEEK probe, cover, SS mesh filter, 2m + 2m extension (6.56’ + 6.56’) cable</td>
<td>USTE009</td>
</tr>
<tr>
<td>You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT</td>
<td>HKC</td>
</tr>
</tbody>
</table>

www.michell.com

Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.
Electrical Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Supply V +</td>
</tr>
<tr>
<td>2</td>
<td>Power Supply V -</td>
</tr>
<tr>
<td>3</td>
<td>Output RS485 Ground</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>Output Channel 1 Temperature +</td>
</tr>
<tr>
<td>6</td>
<td>Output Channel 1 Ground</td>
</tr>
<tr>
<td>7</td>
<td>Output Channel 2 RH +</td>
</tr>
<tr>
<td>8</td>
<td>Output Channel 2 Ground</td>
</tr>
<tr>
<td>9</td>
<td>RS485 Data +</td>
</tr>
<tr>
<td>10</td>
<td>RS485 Data -</td>
</tr>
<tr>
<td>11</td>
<td>Not connected</td>
</tr>
<tr>
<td>12</td>
<td>Not connected</td>
</tr>
<tr>
<td>13</td>
<td>Output Channel 3 (not connected)</td>
</tr>
<tr>
<td>14</td>
<td>Output Channel 3 Ground (not connected)</td>
</tr>
</tbody>
</table>

Do not connect pin 2 (V-) to pin 4 (Ground)

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}+{Feature D}+{Feature E}

Order example: WR283+A+7+N030+P180

Digital RH and temperature transmitter WR283 with 4-20 mA output, stainless steel probe with 2m + 2m extension (6.56' + 6.56') cable and stainless steel sintered filter, temp range -30 to +180°C (-22 to +356°F)

Base Model (Feature A)

Digital RH and temperature transmitter WR283

Signal Output (Feature B)

- 4-20 mA A
- 0–10 V B
- 0–5 V C
- 0–1 V D
- 0–20 mA E

Probe Type (Feature C)

- SS probe, cover & mesh filter, 2m (6.56') cable 2
- SS probe, cover & mesh filter, 2m + 2m extension (6.56' + 6.56') cable 5
- SS probe, cover & sinter filter, 2m (6.56') cable 6
- SS probe, cover & sinter filter, 2m + 2m extension (6.56' + 6.56') cable 7
- PEEK probe, cover, SS mesh filter, 2m (6.56') cable 8
- PEEK probe, cover, SS mesh filter, 2m + 2m extension (6.56' + 6.56') cable 9

Temp Low (Feature D)

- 0°C (+32°F) 0000
- -20°C (-4°F) N020
- -30°C (-22°F) N030

Temp High (Feature E)

- +20°C (+68°F) P020
- +30°C (+86°F) P030
- +50°C (+122°F) P050
- +70°C (+158°F) P070
- +100°C (+212°F) P100
- +140°C (+284°F) P140
- +150°C (+302°F) P150
- +180°C (+356°F) P180
- +200°C (+392°F) P200

Other output scaling available on request XXXX
WR285
Digital Relative Humidity Transmitter - Remote Probe for Pressurized Applications up to 30 bar (400 psi)

The WR285 relative humidity sensor uses the Hygrosmart module, integrated in the interchangeable probe. This device can be used in high-temperature applications due to the remote measurement element and its small overall size. The interchangeable probe allows for simple recalibration and lower maintenance costs.

Highlights
- Up to 30 bar (400 psi) pressure
- Analog and digital output standard
- Interchangeable probe
- Analog output signals selectable through software
- Metric or US measurement units selectable through software
- Can withstand temperatures up to 120°C (248°F)

Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H x W x D</td>
<td>120 x 120 x 51mm (4.72 x 4.72 x 2.00")</td>
</tr>
<tr>
<td>L x Ø</td>
<td>148mm, Ø18mm (L=5.82", Ø0.70")</td>
</tr>
<tr>
<td>Weight</td>
<td>450g (15.87oz)</td>
</tr>
</tbody>
</table>

Technical Specifications

Performance
- Measurement range (RH) 0–100% RH
- Accuracy at 25°C (77°F) <±2% RH (5–95% RH)
- Stability - RH Sensor ±1% RH/year
- Response time - RH Sensor <10 sec typical (for 90% of the step change)

Electrical output/input
- Output signal 0–1, 0–5, 0–10 V
- 0–20 mA, 4–20 mA, RS485
- Supply voltage 15 - 27 V AC / 18 - 38 V DC
- Load resistance Current output: R ≤ 500 Ω
- Power consumption 1.7 W

Operating conditions
- Operating temperature
 - Probe -30 to +120°C (-22 to +248°F)
 - Housing -30 to +70°C (-22 to +158°F)
 - Storage -40 to +70°C (-40 to +158°F)

Mechanical specification
- Ingress protection IP67
- Material
 - Housing Aluminum die casting
 - Probe Stainless steel
- Dimensions
 - Housing 120 x 120 x 51mm (4.72 x 4.72 x 2.00")
 - L=148mm, Ø18mm (L=5.82", Ø0.70")
- Weight 450g (15.87oz)
- Electrical connections Screw terminals

Accessories and Spare Parts
- RS422/485 to PC (RS232) converter 330185
- USB cable/software for configuration F035263
- SS interchangeable probe with 2m (6.56’) cable USTE015
- SS cap slotted with mesh filter K1
- SS cap slotted with PTFE filter Z1
- You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT HKC

Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.
Electrical Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Supply V +</td>
<td>8</td>
<td>Output Channel 2 Ground</td>
</tr>
<tr>
<td>2</td>
<td>Power Supply V -</td>
<td>9</td>
<td>RS485 Data +</td>
</tr>
<tr>
<td>3</td>
<td>Output RS485 Ground</td>
<td>10</td>
<td>RS485 Data -</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
<td>11</td>
<td>Not connected</td>
</tr>
<tr>
<td>5</td>
<td>Not connected</td>
<td>12</td>
<td>Not connected</td>
</tr>
<tr>
<td>6</td>
<td>Not connected</td>
<td>13</td>
<td>Output Channel 3 (not connected)</td>
</tr>
<tr>
<td>7</td>
<td>Output Channel 2 RH +</td>
<td>14</td>
<td>Output Channel 3 Ground (not connected)</td>
</tr>
</tbody>
</table>

Do not connect pin 2 (V -) to pin 4 (Ground)

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}+{Feature D}

Order example: WR285+A+15+K1
Digital RH transmitter WR285, 4-20 mA output, stainless steel probe with 2m (6.56') cable, stainless steel cap with mesh filter

- **Base Model** (Feature A): Digital RH transmitter WR285
- **Signal Output** (Feature B): 4–20 mA (A), 0–10 V (B), 0–5 V (C), 0–1 V (D), 0–20 mA (E)
- **Probe Type** (Feature C): SS interchangeable probe with 2m (6.56') cable (15)
- **Filter** (Feature D): SS cap slotted with mesh filter (K1), SS cap slotted with PTFE filter (Z1)
WR293

Digital Relative Humidity and Temperature Transmitter - Remote Probe for High Temperatures

The WR293 relative humidity transmitter uses the Hygrosmart module, integrated in the interchangeable probe. This device can be used in high-temperature applications due to the remote measurement element and its small overall size. The interchangeable probe allows for simple recalibration and lower maintenance costs.

Highlights
- Three outputs
- Analog and digital output standard
- Interchangeable probe
- Analog output signals selectable through software
- Metric or US measurement units selectable through software
- Available with calculated absolute humidity, dew-point, frost point, mixing ratio or specific enthalpy output
- Can withstand temperatures up to 200°C (392°F)

Technical Specifications

Performance
- **Measurement range (RH)**: 0–100% RH
- **Measurement range (T)**: -30 to +200°C (-22 to +392°F)
- **Accuracy at 23°C (73°F)**
 - Humidity: ±2% RH (5–95% RH)
 - Temperature: ±0.4°C (±0.72°F)
- **Stability - RH Sensor**: <1% RH/year
- **Response time - RH Sensor**: <10 sec typical (for 90% of the step change)

Electrical output/input
- **Output signal**: 0–1, 0–5, 0–10 V
- **Supply voltage**: 15 - 27 V AC / 18 - 38 V DC
- **Load resistance**: Current output: R ≤ 500 Ω
- **Power consumption**: 1.7 W

Operating conditions
- **Operating temperature**
 - Probe: -30 to +200°C (-22 to +392°F)
 - Housing: -30 to +70°C (-22 to +158°F)
 - Storage: -40 to +70°C (-40 to +158°F)

Mechanical specification
- **Ingress protection**: IP65 (NEMA 4 level)
- **Material**
 - Housing: Aluminum die casting
 - Probe: Stainless steel
- **Dimensions**
 - Housing: 120 x 120 x 51mm (4.72 x 4.72 x 2.00”)
 - L = 134mm, Ø12mm (L=5.27”, Ø0.47”)
- **Weight**: 450g (15.87oz)
- **Electrical connections**: Screw terminals
- **Display resolution**: LCD, 2 lines x 16 characters

Accessories and Spare Parts
- **RS422/485 to PC (RS232) converter**: 330185
- **USB cable/software for configuration**: F035263
- **Al mounting flange for Ø12mm (0.47”) SS probes**: FLA012
- **SS sintered filter**: H3
- **SS sintered filter with teflon coating**: J3
- **SS mesh filter**: K8
- **PEEK protection cap with SS mesh filter**: K9
- **SS probe, cover & mesh filter, 2m (6.56”) cable**: USTE002
- **SS probe, cover & mesh filter, 2m + 2m extension (6.56” + 6.56”) cable**: USTE006
- **SS probe, cover & sinter filter, 2m (6.56”) cable**: USTE007
- **SS probe, cover & sinter filter, 2m + 2m extension (6.56” + 6.56”) cable**: USTE008
- **PEEK probe, cover, SS mesh filter, 2m (6.56”) cable**: USTE009
- **PEEK probe, cover, SS mesh filter, 2m + 2m extension (6.56” + 6.56”) cable**: HKC

You can check your hygrometer with the Control Kit HKC which is based on the principle of non-saturated salt solutions. Refer to technical data sheet CONTROL KIT.
Electrical Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Supply V +</td>
</tr>
<tr>
<td>2</td>
<td>Power Supply V -</td>
</tr>
<tr>
<td>3</td>
<td>Output RS485 Ground</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>Output Channel 1 Temperature +</td>
</tr>
<tr>
<td>6</td>
<td>Output Channel 1 Ground</td>
</tr>
<tr>
<td>7</td>
<td>Output Channel 2 RH +</td>
</tr>
<tr>
<td>8</td>
<td>Output Channel 2 Ground</td>
</tr>
<tr>
<td>9</td>
<td>RS485 Data +</td>
</tr>
<tr>
<td>10</td>
<td>RS485 Data -</td>
</tr>
<tr>
<td>11</td>
<td>Not connected</td>
</tr>
<tr>
<td>12</td>
<td>Not connected</td>
</tr>
<tr>
<td>13</td>
<td>Output Channel 3 (optional)</td>
</tr>
<tr>
<td>14</td>
<td>Output Channel 3 Ground (optional)</td>
</tr>
</tbody>
</table>

Do not connect pin 2 (V-) to pin 4 (Ground)

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is WR293 and then add on options to create a string: (Feature A)+ (Feature B)+ (Feature C)+ (Feature D)+ (Feature E)+ (Feature F)

Order example: WR293+A+0+IP6+N030+P180

Digital RH and temperature transmitter WR293, 4-20 mA output, dew point calculated, stainless steel probe with 2m (6.56’) cable and stainless steel sintered filter, -30 to +180°C (-22 to +356°F) temp range

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Supply V +</td>
</tr>
<tr>
<td>2</td>
<td>Power Supply V -</td>
</tr>
<tr>
<td>3</td>
<td>Output RS485 Ground</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>Output Channel 1 Temperature +</td>
</tr>
<tr>
<td>6</td>
<td>Output Channel 1 Ground</td>
</tr>
<tr>
<td>7</td>
<td>Output Channel 2 RH +</td>
</tr>
</tbody>
</table>

Base Model *(Feature A)*

Digital RH and temperature transmitter - Remote Probe for High Temperatures

WR293

Signal Output *(Feature B)*

- 4-20 mA A
- 0-10 V B
- 0-5 V C
- 0-1 V D
- 0-20 mA E

3rd Output *(Feature C)*

- Dew point: -40 to +100°C 0
- Mixing ratio: 0-500 gr/Kg 1
- Absolute Humidity: 0-600 g/m³ 2
- Specific enthalpy: -40 to 1500 KJ/Kg 3
- Frost point: -50 to +10°C 4

Temp High *(Feature F)*

- +20°C (+68°F) P020
- +30°C (+86°F) P030
- +50°C (+122°F) P050
- +70°C (+158°F) P070
- +100°C (+212°F) P100
- +140°C (+284°F) P140
- +150°C (+302°F) P150
- +180°C (+356°F) P180
- +200°C (+392°F) P200

Other output scaling available on request XXXX

Temp Low *(Feature E)*

- 0°C (+32°F) 0000
- -20°C (-4°F) N020
- -30°C (-22°F) N030

 Probe Type *(Feature D)*

- SS probe, cover & mesh filter, 2m (6.56’) cable IP2
- SS probe, cover & mesh filter, 2m + 2m extension (6.56’ + 6.56’) cable IP5
- SS probe, cover & sinter filter, 2m (6.56’) cable IP6
- SS probe, cover & sinter filter, 2m + 2m extension (6.56’ + 6.56’) cable IP7
- PEEK probe, cover, SS mesh filter, 2m (6.56’) cable IP8
- PEEK probe, cover, SS mesh filter, 2m + 2m extension (6.56’ + 6.56’) cable IP9
H5000 & 5100
Capacitive Relative Humidity Sensor

The operating principle of these capacitive relative humidity sensors are based on the hygroscopic properties of their polymer, which is used like a dielectric in a capacitor. The polymer gets in equilibrium with its humid environment quickly, and reversibly, and changes its capacity value depending on the humidity level.

Highlights

• Capacitive thin film sensor
• Measuring range: RH 0–100%, Temp: -30 to +200°C (-22 to +392°F)
• Mixing ratio: 250g (8.82oz) water/kg of dry air
• Low hysteresis
• Response time: 4 seconds

Technical Specifications

<table>
<thead>
<tr>
<th></th>
<th>H5000</th>
<th>H5100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response time</td>
<td>4 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>90% of scale for a step change from 11% to 75% RH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>0–100% RH</td>
<td>0–100% RH</td>
</tr>
<tr>
<td>Temperature</td>
<td>-30 to +200°C</td>
<td>-30 to +100°C</td>
</tr>
<tr>
<td>Pressure</td>
<td>0.04–30 bar</td>
<td>0.04–30 bar</td>
</tr>
<tr>
<td>(0.6–400 psi)</td>
<td>(0.6–400 psi)</td>
<td></td>
</tr>
<tr>
<td>Mixing ratio</td>
<td>250g (8.82oz) water/Kg dry air</td>
<td></td>
</tr>
<tr>
<td>Nominal capacity</td>
<td>500 pF ± 10%</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.86 pF / % RH</td>
<td></td>
</tr>
<tr>
<td>Linearity</td>
<td>± 2.5% RH</td>
<td></td>
</tr>
<tr>
<td>Long term stability</td>
<td>< 1% at 23°C (73°F)</td>
<td></td>
</tr>
<tr>
<td>(12 months) control @ 11% RH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum air speed</td>
<td>< 20m/sec</td>
<td></td>
</tr>
<tr>
<td>(without protection)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hysteresis</td>
<td>Typical value = 0.5% RH</td>
<td></td>
</tr>
<tr>
<td>D Factor loss tangent @ 10 KHz</td>
<td>Typical value = 0.007</td>
<td></td>
</tr>
<tr>
<td>75% RH @ 23°C (73°F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>2.5 V AC</td>
<td></td>
</tr>
<tr>
<td>Peak-to-peak</td>
<td>DC component < 0.2 V</td>
<td></td>
</tr>
<tr>
<td>Operating frequency range</td>
<td>5–300 KHz</td>
<td></td>
</tr>
<tr>
<td>Protection cap</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Weight</td>
<td>0.1g (0.004oz)</td>
<td>1g (0.035oz)</td>
</tr>
</tbody>
</table>

Order Codes

H5-000 without protective housing
Minimum order 50 pieces
H5-100 with protective housing
Minimum order 50 pieces

Dimensions

Issue No: H5000_97197_V2_UK_1110
The operating principle of capacitive relative humidity sensors are based on the hygroscopic properties of their polymer, which is used like a dielectric in a capacitor. The polymer gets in equilibrium with its humid environment quickly, and reversibly, and changes its capacity value depending on the humidity level.

Highlights
- Suitable for corrosive atmosphere
- Teflon coated
- Capacitive thin film sensor
- Measuring range: 0–100% RH, Temp: -30 to +200°C (-22 to +392°F)
- Mixing ratio: 250g (8.82oz) water/kg of dry air
- Low hysteresis
- Response time: 20 seconds

Technical Specifications

<table>
<thead>
<tr>
<th></th>
<th>H6000</th>
<th>H6100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response time</td>
<td>20 sec</td>
<td>20 sec</td>
</tr>
<tr>
<td>Operating range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>0–100% RH</td>
<td>0–100% RH</td>
</tr>
<tr>
<td>Temperature</td>
<td>-30 to +200°C</td>
<td>-30 to +100°C</td>
</tr>
<tr>
<td></td>
<td>(-22 to +392°F)</td>
<td>(-22 to +312°F)</td>
</tr>
<tr>
<td>Pressure</td>
<td>0.04–30 bar (0.6–400 psi)</td>
<td>0.04–30 bar (0.6–400 psi)</td>
</tr>
<tr>
<td>Mixing ratio</td>
<td>250g (8.82oz) water/Kg dry air</td>
<td></td>
</tr>
<tr>
<td>Nominal capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75% RH @ 23°C (73°F)</td>
<td>500 pF ± 10%</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11–75% RH @ 23°C (73°F)</td>
<td>0.86 pF / % RH</td>
<td></td>
</tr>
<tr>
<td>Linearity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11–90% RH @ 23°C (73°F)</td>
<td>± 2.5% RH</td>
<td></td>
</tr>
<tr>
<td>Long term stability</td>
<td>(12 months) control @ 11% RH</td>
<td>< 1% at 23°C (73°F)</td>
</tr>
<tr>
<td>Max. air speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(without protection)</td>
<td>< 20m/sec</td>
<td></td>
</tr>
<tr>
<td>Hysteresis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical value = 0.5% RH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D Factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>loss tangent @10 KHz</td>
<td>75% RH @ 23°C (73°F)</td>
<td>Typical value = 0.007</td>
</tr>
<tr>
<td>Supply voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 V AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC component < 0.2 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating frequency range</td>
<td>5/300 KHz</td>
<td></td>
</tr>
<tr>
<td>Protection cap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1g (0.0004oz)</td>
<td>Yes</td>
<td>1g (0.035oz)</td>
</tr>
</tbody>
</table>

Order Codes

<table>
<thead>
<tr>
<th></th>
<th>Minimum order 50 pieces</th>
</tr>
</thead>
<tbody>
<tr>
<td>H6-000 without protective housing</td>
<td></td>
</tr>
<tr>
<td>H6-100 with protective housing</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions
Humidity and Dew-Point Instruments

17000 & 7400 (Hygrosmart)
Interchangeable Module for Relative Humidity

The I7000 (Hygrosmart) Series is interchangeable without the need for recalibration. The small size allows its integration in any equipment while the plug-and-play system allows fast replacement even by non-skilled staff.

Highlights
- Interchangeable without recalibration
- Sensor response time: <10sec
- Linearization for a specific isotherm on request
- Can be used up to peak temperatures of 95°C (200°F)

Technical Specifications

Performance
- Measurement range (RH): 0–100% RH
- Measurement range (T): -30 to +85°C (-22 to +185°F)
- Accuracy at 23°C (73°F)
 - Humidity: <±2% RH (5–95% RH)
 - Temperature: ±0.2°C (±0.36°F) Pt100 1/3 DIN direct
- Stability - RH Sensor: <±1% RH/year
- Response time - RH Sensor: <10 sec typical (for 90% of the step change)

Electrical output/input
- Output signal (RH): I7000: 0–1 V
 - I7400: 0.2–1 V
- Digital, variable frequency output
- Output signal (T): 3-wire 1/3 DIN Pt100 direct
- Supply voltage: 5 V DC ±5%
- Power consumption: ≤ 1.5 mA max

Operating conditions
- Operating temperature
 - Probe, Housing: -30 to +85°C (-22 to +185°F)
 - Storage: -40 to +85°C (-40 to +185°F)

Mechanical specification
- Housing material: NORYL PPo UL 94 V0
- Dimensions
 - L=33mm, ø16mm (L=1.3", ø0.65")
- Weight: 3g (0.1oz)
- Electrical connections
 - RH: 3-wire
 - T: 3-wire

Accessories and Spare Parts
- Mini flange
 - 1A01210
- Connecting kit with wires
 - 6A06350
- Connecting kit for PCB
 - 6A05130

[HYGROSMART ® INTERCHANGEABLE MODULE]
Electrical Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Output frequency</td>
</tr>
<tr>
<td>2</td>
<td>Common Ground</td>
</tr>
<tr>
<td>3</td>
<td>Power Supply V + (5 V DC)</td>
</tr>
<tr>
<td>4</td>
<td>Output RH + 0-1 V DC (I7000) (Output 0.2-1 V DC (I7400)</td>
</tr>
<tr>
<td>5</td>
<td>Pt100</td>
</tr>
<tr>
<td>6</td>
<td>% RH=[(T on/T off)*2049-1]/16.12</td>
</tr>
<tr>
<td>7</td>
<td>Output RH + 0-1 V DC</td>
</tr>
</tbody>
</table>

Digital output

Characterized by a variable frequency pulse train in function of the relative humidity.

% RH=[(T on/T off)*2049-1]/16.12

\[5 < f < 30 \text{ Hz} \]

Order Codes

I7000 & I7400 - Interchangeable Module for Relative Humidity

<table>
<thead>
<tr>
<th>Feature</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>I7-0-00-0</td>
<td>0-1 V without temp configuration</td>
</tr>
<tr>
<td></td>
<td>I7-0-00-1</td>
<td>0-1 V with direct Pt100</td>
</tr>
<tr>
<td></td>
<td>I7-4-00-0</td>
<td>0.2-1 V without temp configuration</td>
</tr>
<tr>
<td></td>
<td>I7-4-00-1</td>
<td>0.2-1 V with direct Pt100</td>
</tr>
</tbody>
</table>
The S503 Humidity Generator enables users of humidity sensors, transmitters and portable devices to quickly and accurately generate a stable humidity in a test chamber to validate or calibrate sensors.

Highlights
- Generates humidity levels between 10–90% RH
- Highly portable
- Fast stabilization of chamber humidity
- Independent reference hygrometer – optional
- Multiple sensors can be calibrated at the same time

Technical Specifications

<table>
<thead>
<tr>
<th>Humidity</th>
<th>Temperature</th>
<th>Sensor under Calibration</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation range</td>
<td>Temperature accuracy</td>
<td>Voltage read out</td>
<td>Probe ports</td>
</tr>
<tr>
<td>10–90% RH in steps of 0.1% RH</td>
<td>±0.3°C (±0.54°F) - internal reference</td>
<td>0–1, 0–5, 0–10 V</td>
<td>7 off – sensor body diameters 5 to 25mm (0.2 to 0.98”) accommodated by port adapters</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Operating temperature (ambient)</td>
<td>Current read out</td>
<td>Desiccant chamber</td>
</tr>
<tr>
<td>±2% RH or better (5–95% RH)</td>
<td>+15 to +35°C (+59 to +95°F)</td>
<td>4–20 mA</td>
<td>25g (0.88oz) capacity</td>
</tr>
<tr>
<td>Stability chamber</td>
<td>Stability chamber</td>
<td>Voltage supply</td>
<td>Saturation chamber</td>
</tr>
<tr>
<td>Better than ±0.5%</td>
<td>Better than ±0.5%</td>
<td>15 V DC, ±10% at 30 mA max</td>
<td>25ml capacity, distilled water</td>
</tr>
<tr>
<td>Stabilization time to set point</td>
<td><10 minutes</td>
<td></td>
<td>Display</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3½ digit LCD, 13mm (0.5”) characters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Supply</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 V DC (100 - 240 V AC adapter included)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.85kg (4.08lb)</td>
</tr>
</tbody>
</table>

Dimensions

- Side View
- Top View
- Back View

Notes:
- Hole A = Drain hole with cap
- Hole B = Power hole for adapter

Issue No: S503_97199_V2_UK_1110

Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.
Accessories and Spare Parts

- 0.25kg (0.55lbs) desiccant (orange)
 A000171
- ø18.5mm (0.73") molded polymer port adpt (for ø8mm (0.31") probes)
 A000180
- ø18.5mm (0.73") molded polymer port adpt (for ø12mm (0.47") probes)
 A000190
- ø18.5mm (0.73") blind stop
 A000200
- Carrying case for the S503
 A000230
- Water bottle
 A000242
- Tool for changing the port adapters
 A000265
- SS port adapter for Optidew
 A000272
- Polymer port adpt ø18.5mm (0.73") to ø3mm (0.19") (for Optidew probe)
 A000273
- Blind stop for Optidew adapter
 A000277
- Blind stop for PRT adapter
 A000278
- Al adapter & blind stop (to be modified by customer) (M30x1)
 A000280
- Al port adpt ø12mm (0.47") probe, blind stop (M30x1)
 A000280X
- Al port adpt for ø13.5mm (0.53") probe, blind stop (M30x1)
 A000281
- Al port adpt for ø14mm (0.55") probe, blind stop (M30x1)
 A000282
- Al port adpt for ø15mm (0.59") probe, blind stop (M30x1)
 A000283
- Al port adpt for ø18.5mm (0.73") probe, blind stop (M30x1)
 A000284
- Al port adpt for ø19mm (0.75") probe, blind stop (M30x1)
 A000285
- Al port adpt for ø24mm (0.95") probe, blind stop (M30x1)
 A000286
- Al port adpt for ø25mm (0.98") probe, blind stop (M30x1)
 A000287
- Al port adpt for ø25mm (0.98") probe, blind stop (M30x1)
 A000288
- Optidew Vision reference hygrometer with sensor
 OPT-V-01
- Control sensor
 HT757700

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is `{Feature A}` and then add on options to create a string: `{Feature A}+{Feature B}+{Feature C}+{Feature D}

Order example: S503-DIG+14+AUS+C

Relative Humidity Generator for Calibrations

<table>
<thead>
<tr>
<th>Type (Feature A)</th>
<th>Base unit - S503, including 7 user-specified port adapters, power adapter, desiccant and adapter tool</th>
<th>S503-DIG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base unit - S503-DIG with extended chamber (0.54 liter extra)</td>
<td>S503-DIG-LC</td>
</tr>
<tr>
<td></td>
<td>Base unit - Calibration kit with Optidew adapters - S503, with 5 user-specified port adapters, 2 Optidew adapters (A000272 and A000273), power adapter, desiccant and adapter tool</td>
<td>S503-DIG-OPT</td>
</tr>
<tr>
<td></td>
<td>Base unit - Calibration kit - S503, including hand meter and probe (with calibration certificate), 7 user-specified port adapters, power adapter, desiccant, distilled water bottle (water not included), adapter tool and carrying case</td>
<td>S503-DIG-SET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adapter (Feature B)</th>
<th>Port adapter 12mm (0.47")</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Port adapter 13.5mm (0.53")</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td>Port adapter 14mm (0.55")</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Port adapter 15mm (0.59")</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Port adapter 18.5mm (0.73")</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>Port adapter 19mm (0.75")</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Port adapter 24mm (0.94")</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Port adapter 25mm (0.98")</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display (Feature D)</th>
<th>Display in deg C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Display in deg F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power (Feature C)</th>
<th>Australian power supply</th>
<th>AUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>European power supply</td>
<td>EUR</td>
</tr>
<tr>
<td></td>
<td>North American power supply</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>UK power supply</td>
<td>UK</td>
</tr>
</tbody>
</table>
Optidew Vision
Precision Dew-Point Meter

For laboratory or process humidity measurement with best accuracy and virtually zero drift, Optidew Vision combines latest sensor design with digital control technology.

The Optidew Vision can be used with an S509 Relative Humidity Generator, providing a low cost, high accuracy, portable RH calibration package.

Highlights
- Fundamental drift free dew point measurement
- Measurement Range: <0.5 to 100 %RH from -40 to +90°C (-22 to +194°F) ambient
- ±0.2°Cdp accuracy. Optional higher accuracy available
- High temperature sensor option to +130°C (+266°F)
- Rugged, NEMA-12 bench-top housing
- Display and output of multiple engineering units
- High pressure sensor option to 25 MPa (250 barg)
- Free application software

Technical Specifications

Performance
- **Measurement range**
 - 1-stage: -30 to +90°Cdp (-22 to +194°Fdp)
 - 2-stage: -40 to +90°Cdp (-40 to +194°Fdp)
 - High temperature: -20 to +130°Cdp (-4 to +266°Fdp)
- **Measurement accuracy**
 - ±0.2°Cdp
 - ±0.1°C temperature
 - ±0.15°Cdp accuracy optional
- **Measurement units**
 - °C, °F dew point; %RH; °C, °F temperature; g/m³; g/kg; a_{w}; Δ(t – t dew point)
- **Response speed**
 - 1°C/sec plus settling time (dew point dependent)
- **Power supply**
 - 85 to 264 V AC, 47/440 Hz

Dew-Point Sensor
- Mirror options available: Gold plated copper, Solid gold, 316 stainless steel – high temp sensor
- **Temperature measurement**
 - 4 wire Pt100, 1/3 DIN class B
- **Sample flow rate**
 - 0.1 to 2 l/min in sampling block
- **Max velocity**
 - 10 m/sec direct insertion
 - 30 m/sec with sintered guard
- **Pressure**
 - 2 MPa (20 barg)
 - 25 MPa (250 barg) optional
- **Ingress protection**
 - IP66 (NEMA 4)
 - IP65 25 MPa (250 barg) sensor (NEMA 12)
- **Cable length**
 - 2m (Maximum 30m) ((6.5') (Max 98'))

Remote PRT
- **Temperature measurement**
 - 4 wire Pt100, 1/10 DIN class B
- **Cable length**
 - 2m (Maximum 30m) ((6.5') (Max 98'))

Transmitter Electronics
- **Resolution**
 - 0.1 for °C, °F and %RH
 - 0.01 for g/m³ and g/kg
- **Outputs**
 - Analog: Two channels 0/4-20 mA
 - Digital: RS232 (RS485 optional)
 - Alarm: Volt free contact, 2A @ 30 V DC
- **Status LEDs**
 - Power on, DCC and alarm status
- **Operating temperature**
 - -20 to +50°C (-4 to +122°F) ambient
- **Enclosure**
 - Standing case with carry handle. Panel mounting kit optional
- **Ingress protection**
 - IP54 (NEMA 2)

Dimensions

- Width: 150mm
- Height: 100mm
- Depth: 250mm

Please note: Michell Instruments adopts a continuous development program which sometimes necessitates specification changes without notice. Please contact us for latest version.
Accessories and Spare Parts

<table>
<thead>
<tr>
<th>Feature</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>High accuracy calibration to ±0.15°Cdp (not available with HT sensor)</td>
<td>OPV-ACC</td>
</tr>
<tr>
<td>Sintered SS guard for particulate contamination 10-12 µm</td>
<td>OPV-SSG</td>
</tr>
<tr>
<td>HDPE sintered guard for particulate and liquid protection 10 µm</td>
<td>OPV-HSG</td>
</tr>
<tr>
<td>Membrane sensor guard for protection from liquid contamination >0.2 µm</td>
<td>OPV-MSG</td>
</tr>
<tr>
<td>Membrane element, to replace membrane sensor guard (pack 1) >0.2 µm</td>
<td>OPV-ME</td>
</tr>
<tr>
<td>Sensor sampling block - SS with 1/8” NPT in/out threaded gas ports</td>
<td>OPV-SSB</td>
</tr>
<tr>
<td>Air cooled heatsink, heat sink and cooling fan (specify 110 or 220 V) includes sensor sampling block</td>
<td>OPV-ACH</td>
</tr>
<tr>
<td>Liquid cooled block w/gas ports & coolant channel. Requires ext coolant supply</td>
<td>OPV-LCB</td>
</tr>
<tr>
<td>Sensor lock nut kit - to mount the dew-point sensor to a panel or bulkhead</td>
<td>OPV-SLK</td>
</tr>
<tr>
<td>Sensor cable - dew point only, 2m (6.56 ft) with connectors</td>
<td>OPV-SC</td>
</tr>
<tr>
<td>Additional length sensor cables for dew-point and temperature sensor price per meter - specify X meters additional</td>
<td>OPV-SCX</td>
</tr>
<tr>
<td>High temperature sensor cable - dew point only, 2m (6.56 ft) with connectors</td>
<td>OPV-HTSC</td>
</tr>
<tr>
<td>Additional length sensor cables for high temperature sensor price per meter - specify X meters additional</td>
<td>OPV-HTSCX</td>
</tr>
<tr>
<td>Remote PRT, 2m (6.56 ft) cable with connector</td>
<td>OPV-PRT</td>
</tr>
<tr>
<td>Panel mounting kit for 19” rack</td>
<td>OPV-PMK</td>
</tr>
<tr>
<td>Heavy duty transport case</td>
<td>OPV-TCS</td>
</tr>
<tr>
<td>Cleaning materials required for periodic maintenance of cooled mirror dew-point hygrometer sensors (fluids not included)</td>
<td>CM-CLN-KIT</td>
</tr>
</tbody>
</table>

Ordering Codes

To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}+{Feature D}+{Feature E}+{Feature F}

Order example: OPV+HT-SC02+02-ACE-SS+H+2+CM-STD

Optidew Vision with 2m (6.5’) hi temp cable assemblies for dp & t, 2 stage sensor Acetal housing + SS stud mirror, high pressure (up to 25 MPa), RS232 output & standard traceable in-house calibration

Base Model (Feature A)

- Base unit: Dew-Point Hygrometer
 - OPV

Cable Length (Feature B)

- 2m (6.5’) cable assemblies for dp & t
 - SC02
- Additional cable - price per meter
 - SCO2
- 2m (6.5’) hi temp cable assemblies for dp & t
 - HT-SC02
- Additional high temp cable - price per meter
 - HT-SC02

Sensor (Feature C)

1. 1 stage sensor Acetal + Au coated Cu mirror
 - 01-ACE-STD
2. 2 stage sensor Acetal + Au coated Cu mirror
 - 02-ACE-STD
3. 2 stage sensor Acetal + Au stud mirror
 - 02-ACE-AUS
4. 2 stage sensor Acetal + SS stud mirror
 - 02-ACE-SS
5. 2 stage sensor Acetal + Pt stud mirror
 - 02-ACE-PLT
6. 2 stage sensor PEEK + Au coated Cu mirror
 - 02-PEEK-STD
7. 2 stage sensor PEEK + Au stud mirror
 - 02-PEEK-AUS
8. 2 stage sensor PEEK + SS stud mirror
 - 02-PEEK-SS
9. 2 stage sensor PEEK + Pt stud mirror
 - 02-PEEK-PLT
10. 2 stage sensor SS + Au coated Cu mirror
 - 02-SS-STD
11. 2 stage sensor SS + Au stud mirror
 - 02-SS-AUS
12. 2 stage sensor SS + SS stud mirror
 - 02-SS-SS
13. 2 stage sensor SS + Pt stud mirror
 - 02-SS-PLT

Calibration (Feature F)

- Standard traceable in-house calibration
 - CM-STD
- High accuracy traceable calibration to ±0.15°C
 - CM-ACC
- 5-pt UKAS dew-point calibration (specify points required on order)
 - CM-DPUKAS
- Additional UKAS dew-point calibration point
 - CM-DPAP01
- 5-pt UKAS RH calibration at one temp (specify points required on order)
 - CM-RHUUKAS
- Additional UKAS RH calibration point
 - CM-RHAP01
- Additional five UKAS RH points at alt temp
 - CM-RHAT

Digital (Feature E)

- RS232
 - 2
- RS485
 - 4

Pressure (Feature D)

- Low pressure (up to 2 MPa)
 - L
- High pressure (up to 25 MPa)
 - H
S904
Relative Humidity and Temperature Generator for Calibrations

The S904 humidity and temperature generator is designed to calibrate and verify the operation of relative humidity sensors and transmitters. With a chamber temperature range of +10 to +50°C (+50 to +122°F), a uniformity of ±0.1°C (±0.2°F) and the ability to generate 10–90% RH, accurate and repeatable calibrations are made easy.

Highlights
- Relative humidity and temperature controlled chamber
- Excellent stability within chamber: ±0.2% RH, Temp. ±0.1°C (±0.2°F)
- Optional in-built data-logging for reference probe and probes under calibration
- Probes with body diameters between 5 to 25mm (0.2 to 0.98”) can be accepted

Technical Specifications

<table>
<thead>
<tr>
<th>Humidity</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator range</td>
<td>10–90% RH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>≤±1% RH (10–70% RH)</td>
<td>≤±1.5% RH (70–90% RH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>±0.2% RH (20–80% RH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator range</td>
<td>+10 to +50°C (+50 to +122°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(lowest T set point = 10°C (18°F) below ambient)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.1°C (±0.2°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>±0.1°C (±0.2°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chamber</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp rate from</td>
<td>+20 to +40°C (+68 to +104°F)</td>
<td>+40 to +20°C (+104 to +68°F)</td>
<td>1.5°C / minute (2.7°F / minute)</td>
<td>0.7°C / minute (1.2°F / minute)</td>
<td></td>
</tr>
<tr>
<td>Control element</td>
<td>Removable relative humidity sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe ports</td>
<td>up to 5 – sensor body diameters 5 to 25mm (0.2 to 0.98”) accommodated by port adapters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber volume</td>
<td>2000cm³ (122.1in³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber dimensions</td>
<td>105 x 105 x 160mm (4.13 x 4.13 x 6.3”) (wxhxd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument dimensions</td>
<td>520 x 290 x 420mm (20.5 x 11.4 x 16.5”) (wxhxd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set point resolution</td>
<td>0.1 for humidity and temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displays</td>
<td>3 digit LED, 10mm (0.39”) characters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply</td>
<td>85–264 V AC, 47–63 Hz, 150 VA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>20kg (44lb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensions

Front View

Side View
Humidity and Dew-Point Instruments

Accessories and Spare Parts

- 0.25kg (0.55lbs) desiccant (orange) A000171
- ø18.5mm (0.73") Blind stop A000200
- Drying module A000240
- Water bottle A000242
- Door kit with 5 ports. 5 adapters to be specified A000263
- Door kit with 5 ports and 25 adapters (5 x ø19mm (0.75"), 4 x ø12mm (0.47"), ø13.5mm (0.53"), ø15mm (0.59"), ø18.5mm (0.73"), ø24mm (0.94") - and blind stops. Adapter tool included) A000264
- Tool for changing the port adapters A000265
- Door with clear window - no ports A000266
- Door without ports A000268
- Door kit for use with MI Optidew. (Optidew dew-point sensor port adapter, PRT port adapter and 4 x ø19mm (0.75") adapters. Adapter tool included) A000269
- Polymer port adap ø18.5mm (0.73") to ø3mm (0.19") (for Optidew probe) A000273
- Blind stop for Optidew adapter A000277
- Blind stop for PRT adapter A000278
- M30x1 Molded polymer port adpt & blind stop (to be modified by customer) A000290
- Polymer port adpt a client specific & blind stop A000290X
- Polymer port adpt for ø12mm (0.47") probe, blind stop (M30x1) A000291
- Polymer port adpt for ø13.5mm (0.53") probe, blind stop (M30x1) A000292
- Polymer port adpt for ø14mm (0.55") probe, blind stop (M30x1) A000293
- Polymer port adpt for ø15mm (0.59") probe, blind stop (M30x1) A000294
- Polymer port adpt for ø18.5mm (0.73") probe, blind stop (M30x1) A000295
- Polymer port adpt for ø19mm (0.75") probe, blind stop (M30x1) A000296
- Polymer port adpt for ø24mm (0.95") probe, blind stop (M30x1) A000297
- Polymer port adpt for ø25mm (0.98") probe, blind stop (M30x1) A000298
- Transport Case for OptiCal and S904 OCAL-TC
- Control sensor HT961T00

Order Codes

| S904 - Relative Humidity and Temperature Generator for Calibrations |
|---|---|---|
| Feature | Item | Description |
| Type | S904 | Base unit |
| S904-D | Base unit - with RS232/USB interface (data-logging software for PC - 6 channel data-logger) |

Labview logging software

1. S904 set point temperature (0-10 V = 0 to 100°C (32 to 212°F)
2. S904 set point RH (0-10 V = 0 to 100% RH)
3. Free to use (0-10 V)
4. Free to use (0-10 V)
5. Free to use (0-10 V)
6. Free to use (0-10 V)
7. Free to use (0-10 V)
8. Free to use (0-10 V)

The acquisition system only measures 0-10 V on every channel so the 4-20 mA signals from the Optidew are converted to a 0-10 V signal. Channels 1 and 2 are not available for logging signals. A 500 Ω resistor must be used.
OptiCal
Relative Humidity and Temperature Generator with built-in Chilled Mirror Reference

The OptiCal is a bench-top, fully self-contained humidity/temperature calibrator. The system comprises a humidity and temperature controlled chamber that can house up to five or more humidity sensors, depending on their physical dimensions. The humidity and temperature within the chamber are closed-loop controlled and continuously monitored by a precision chilled mirror reference hygrometer. The OptiCal works by time-proportioning the flows of dry and saturated air according to the pre-selected relative humidity value. The chamber temperature is controlled by a four-zone Peltier heat pump arrangement for maximum stability and minimum temperature gradient. The saturator assembly can be filled easily with the distilled water reservoir at the front of the unit and the easily accessible desiccator can be re-charged by heating when required. No other maintenance is necessary. The only external service required is a single phase power supply.

Highlights
- Precision relative humidity and temperature calibrator
- Generate 10 to 90% RH over +10 to +50°C (+50 to +122°F) temperature
- Integral chilled mirror reference hygrometer
- UKAS Accredited Calibration, as standard
- Humidity and temperature profile generation for unattended verification of sensors
- Transportable calibrator enables on-site calibrations

Technical Specifications

Reference Hygrometer

<table>
<thead>
<tr>
<th>Type</th>
<th>Optidew chilled mirror dew-point transmitter</th>
</tr>
</thead>
</table>

Humidity

<table>
<thead>
<tr>
<th>Generator range</th>
<th>10–90% RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>≤±1% RH (10–70% RH)</td>
</tr>
<tr>
<td>Control element</td>
<td>≤±1.5% RH (70–90% RH)</td>
</tr>
<tr>
<td>Stability</td>
<td>±0.2% RH (20–80% RH)</td>
</tr>
</tbody>
</table>

Temperature

<table>
<thead>
<tr>
<th>Generator range</th>
<th>+10 to +50°C (+50 to +122°F) (lowest T set point = 10°C (18°F) below ambient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>±0.1°C (±0.2°F)</td>
</tr>
<tr>
<td>Stability</td>
<td>±0.1°C (±0.2°F)</td>
</tr>
</tbody>
</table>

Chamber

<table>
<thead>
<tr>
<th>Ramp rate from +20 to +40°C (+68 to +104°F)</th>
<th>1.5°C / minute (2.7°F / minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+40 to +20°C (+104 to +68°F)</td>
<td>0.7°C / minute (1.2°F / minute)</td>
</tr>
<tr>
<td>Control element</td>
<td>Removable relative humidity sensor</td>
</tr>
</tbody>
</table>

General

Probe ports	up to 5 – sensor body diameters 5–25mm (0.2 to 0.98") accommodated by port adapters
Chamber volume	2000 cm³ (122.1in³)
Chamber dimensions	105 x 105 x 160mm (4.13 x 4.13 x 6.3") (wxhd)
Instrument dimensions	520 x 290 x 420mm (20.5 x 11.4 x 16.5") (wxhd)
Set point resolution	0.1 for humidity and temperature
Displays	High definition 2 lines alpha numeric
Measurement units	°C, °Cdp, % RH, g/kg, g/m³, (t-td), aₕ
Outputs	Analog Two channels 4-20 mA or 0-20 mA
	Digital RS232 (RS485 optional)
	Alarm Volt free contact, 2A @ 30 V DC
Supply	85–264 V AC, 47–63 Hz, 150 VA
Weight	20kg (44lb)

Logging and profiling software
Accessories and Spare Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Order Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25kg (0.55lbs) desiccant (orange)</td>
<td>A000171</td>
</tr>
<tr>
<td>ø18.5mm (0.73") Blind stop</td>
<td>A000200</td>
</tr>
<tr>
<td>Drying module</td>
<td>A000240</td>
</tr>
<tr>
<td>Water bottle</td>
<td>A000242</td>
</tr>
<tr>
<td>PRT sensor</td>
<td>A000243</td>
</tr>
<tr>
<td>Door kit with 5 ports. 5 adapters to be specified</td>
<td>A000263</td>
</tr>
<tr>
<td>Door kit with 5 ports and 25 adapters (5 x ø19mm (0.75"), 4 x ø12mm (0.47"), ø13.5mm (0.53"), ø15mm (0.59"), ø18.5mm (0.73"), ø24mm (0.94") and blind stops. Adapter tool included)</td>
<td>A000264</td>
</tr>
<tr>
<td>Tool for changing the port adapters</td>
<td>A000265</td>
</tr>
<tr>
<td>Door with clear window - no ports</td>
<td>A000266</td>
</tr>
<tr>
<td>Door without ports</td>
<td>A000268</td>
</tr>
<tr>
<td>Door kit for use with MI Optidew. (Optidew dew-point sensor port adapter, PRT port adapter and 4 x ø19mm (0.75") adapters. Adapter tool included)</td>
<td>A000269</td>
</tr>
<tr>
<td>Polymer port adpt ø18.5mm (0.73") to ø3mm (0.19") (for Optidew probe)</td>
<td>A000273</td>
</tr>
<tr>
<td>M30x1 Molded polymer port adpt & blind stop (to be modified by customer)</td>
<td>A000290</td>
</tr>
<tr>
<td>Polymer port adpt ø client specific & blind stop</td>
<td>A000290X</td>
</tr>
<tr>
<td>Polymer port adpt for ø12mm (0.47") probe, blind stop (M30x1)</td>
<td>A000291</td>
</tr>
<tr>
<td>Polymer port adpt for ø13.5mm (0.53") probe, blind stop (M30x1)</td>
<td>A000292</td>
</tr>
<tr>
<td>Polymer port adpt for ø14mm (0.55") probe, blind stop (M30x1)</td>
<td>A000293</td>
</tr>
<tr>
<td>Polymer port adpt for ø15mm (0.59") probe, blind stop (M30x1)</td>
<td>A000294</td>
</tr>
<tr>
<td>Polymer port adpt for ø18.5mm (0.73") probe, blind stop (M30x1)</td>
<td>A000295</td>
</tr>
<tr>
<td>Polymer port adpt for ø19mm (0.75") probe, blind stop (M30x1)</td>
<td>A000296</td>
</tr>
<tr>
<td>Polymer port adpt for ø24mm (0.95") probe, blind stop (M30x1)</td>
<td>A000297</td>
</tr>
<tr>
<td>Polymer port adpt for ø25mm (0.98") probe, blind stop (M30x1)</td>
<td>A000298</td>
</tr>
<tr>
<td>Control sensor</td>
<td>HT961T00</td>
</tr>
<tr>
<td>Transport Case for OptiCal and S904</td>
<td>OCAL-TC</td>
</tr>
</tbody>
</table>

Dimensions

Order Codes

<table>
<thead>
<tr>
<th>Feature</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Model</td>
<td>OPTICAL</td>
<td>Base unit</td>
</tr>
</tbody>
</table>
Control Kit
For the Calibration of Relative Humidity Sensors

Technical Specifications
The control kit consists of:
- 5 phials of the same humidity value
- 7 test strips
- 1 control chamber with version HKCxxC,
 without control chamber with version HKCxxS
- Box dimensions: 100 x 140 x 40mm (3.93 x 5.51 x 1.57”)
- Weight: 0.15kg (0.33lb)

Accuracy
An accuracy of ±3% RH can be achieved if the test procedure is adhered to.

Operating Conditions
- Reference temperature: +23°C ±1°C (+73°F ±1.8°F)
- Environmental humidity stabilized ±10%
- Set up conditions:
 Temperature between 0 and +50°C (+32 and +122°F) with correction to be applied according to the instruction manual.
- Humidity between 40 and 60% RH
- The instrumentation should be checked and the control kit must be kept in the same environment at least 10 hours before the procedure is started
- Shelf life of the solutions:
 In phial: unlimited
 In the control chamber: 2 hours

Ordering Codes
To construct the order code, select the relevant feature from the tables below, starting with the base model, which is {Feature A} and then add on options to create a string: {Feature A}+{Feature B}+{Feature C}

Order example: HKC-25-C12
25% RH control kit with chamber & ø12mm (0.47”) adapter, including transport case

<table>
<thead>
<tr>
<th>Base Model (Feature A)</th>
<th>HKC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative humidity control kit with transport case</td>
<td>HKC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RH Levels (Feature B)</th>
<th>25% RH without chamber</th>
<th>35% RH without chamber</th>
<th>50% RH without chamber</th>
<th>80% RH without chamber</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKC</td>
<td>HKC</td>
<td>HKC</td>
<td>HKC</td>
<td>HKC</td>
</tr>
<tr>
<td>25</td>
<td>35</td>
<td>50</td>
<td>80</td>
<td>HKC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chambers (Feature C)</th>
<th>With chamber & ø12mm (0.47”) adapter</th>
<th>With chamber & ø19mm (0.47”) adapter</th>
<th>Without chamber</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKC</td>
<td>HKC</td>
<td>HKC</td>
<td>HKC</td>
</tr>
<tr>
<td>25</td>
<td>35</td>
<td>50</td>
<td>80</td>
</tr>
</tbody>
</table>
Effects of pressure, temperature and concentration on humidity parameters

In nature, water exists in three different states: gaseous (vapor), liquid (rain, fog) and solid (snow, ice, hail). Water in the gaseous state is invisible. The maximum quantity of water vapor that the air can contain depends on temperature and pressure. The table below shows how the parameter change influences the measured values.

Relative humidity is the ratio of the actual quantity of water vapor that an air sample contains to the maximum quantity of water vapor that such a sample can contain at the sample pressure and temperature.

<table>
<thead>
<tr>
<th></th>
<th>Temperature Increase</th>
<th>Temperature Decrease</th>
<th>Pressure Increase</th>
<th>Pressure Decrease</th>
<th>Vapor Increase</th>
<th>Vapor Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>% RH</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Dew Point</td>
<td>↔ ↔</td>
<td>↔ ↔</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Absolute Humidity</td>
<td>↔ ↔</td>
<td>↔ ↔</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Mix Ratio</td>
<td>↔ ↔</td>
<td>↔ ↔</td>
<td>↔ ↔</td>
<td>↑</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Concentration of Water Vapor</td>
<td>↔ ↔</td>
<td>↔ ↔</td>
<td>↔ ↔</td>
<td>↑</td>
<td>↓</td>
<td></td>
</tr>
</tbody>
</table>
Accessories

<table>
<thead>
<tr>
<th>Item Code</th>
<th>Description</th>
<th>Associated Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>A000001</td>
<td>19mm (0.75”) Slotted protection cap white</td>
<td>WM33 & S2</td>
</tr>
<tr>
<td>A000002</td>
<td>19mm (0.75”) Slotted protection cap black</td>
<td>PC33, S2, 62 & 62V DT722, MDM25</td>
</tr>
<tr>
<td>A000003</td>
<td>12mm (0.47”) Slotted protection cap, black</td>
<td>PCMini52, MDM25</td>
</tr>
<tr>
<td>A000014</td>
<td>19mm (0.75”) PVDF filter</td>
<td>PC33, S2, 62 & 62V WM33 & S2 DT722, MDM25</td>
</tr>
<tr>
<td>A000015</td>
<td>19mm (0.75”) PVDF filter with protection cap black</td>
<td>PC33, S2, 62 & 62V DT722</td>
</tr>
<tr>
<td>A000016</td>
<td>19mm (0.75”) PVDF filter with protection cap white</td>
<td>WM33 & S2</td>
</tr>
<tr>
<td>A000017</td>
<td>12mm (0.47”) PVDF filter</td>
<td>PCMini52, MDM25</td>
</tr>
<tr>
<td>A000018</td>
<td>12mm (0.47”) PVDF filter with protection cap, black</td>
<td>PCMini52, MDM25</td>
</tr>
<tr>
<td>A000019</td>
<td>HDPE filter</td>
<td>SF52</td>
</tr>
<tr>
<td>A000021</td>
<td>19mm (0.75”) Mesh filter with protection cap black</td>
<td>PC33, S2, 62 & 62V WM33 & S2 DT722, MDM25</td>
</tr>
<tr>
<td>A000022</td>
<td>12mm (0.47”) Mesh filter with protection cap, black</td>
<td>PCMini52, MDM25</td>
</tr>
<tr>
<td>A000023</td>
<td>12mm (0.47”) Flat SS sintered dust filter</td>
<td>PCMini52, MDM25</td>
</tr>
<tr>
<td>A000025</td>
<td>19mm (0.75”) Arrow SS sintered filter 5μm</td>
<td>PC33, S2, 62 & 62V WM33 & S2 DT722</td>
</tr>
<tr>
<td>A000026</td>
<td>19mm (0.75”) Arrow SS sintered filter 10μm</td>
<td>PC33, S2, 62 & 62V WM33 & S2 DT722</td>
</tr>
<tr>
<td>A000027</td>
<td>19mm (0.75”) Arrow SS sintered filter 20μm</td>
<td>PC33, S2, 62 & 62V WM33 & S2 DT722</td>
</tr>
<tr>
<td>A000028</td>
<td>12mm (0.47”) Arrow 20 μm SS sintered filter</td>
<td>PCMini52, MDM25</td>
</tr>
<tr>
<td>A000040</td>
<td>19mm (0.75”) Foil filter 2μm with protection cap black</td>
<td>PC33, S2, 62 & 62V DT722</td>
</tr>
<tr>
<td>A000041</td>
<td>19mm (0.75”) Foil filter 2μm with protection cap white</td>
<td>WM33 & S2</td>
</tr>
<tr>
<td>A000042</td>
<td>19mm (0.75”) Oleophobic foil filter 0.7μm with protection cap black</td>
<td>PC33, S2, 62 & 62V DT722</td>
</tr>
<tr>
<td>A000043</td>
<td>19mm (0.75”) Oleophobic foil filter 0.7μm with protection cap white</td>
<td>WM33 & S2</td>
</tr>
<tr>
<td>A000044</td>
<td>19mm (0.75”) Foil filter 1.5μm w/protection cap black</td>
<td>PC33, S2, 62 & 62V DT722</td>
</tr>
</tbody>
</table>
Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Associated products</th>
</tr>
</thead>
<tbody>
<tr>
<td>A000045</td>
<td>WM33 & 52</td>
</tr>
<tr>
<td>H2</td>
<td>WM281</td>
</tr>
<tr>
<td>H3</td>
<td>WM281, WM291, DT282</td>
</tr>
<tr>
<td>H4</td>
<td>PF211, DT269</td>
</tr>
<tr>
<td>J2</td>
<td>WM281, WM291, DT282</td>
</tr>
<tr>
<td>J3</td>
<td>WR283, WR293, DT284</td>
</tr>
<tr>
<td>K1</td>
<td>PCM/Mini70, PPM/Mini72, WR285</td>
</tr>
<tr>
<td>K6</td>
<td>DT282</td>
</tr>
<tr>
<td>K7</td>
<td>WM281, WM291</td>
</tr>
<tr>
<td>K8</td>
<td>WR283, WR293, DT284</td>
</tr>
<tr>
<td>K9</td>
<td>WR283, WR293, DT284</td>
</tr>
<tr>
<td>SSG</td>
<td>Easidew, Easidew I.S., Easidew PRO I.S., Easidew Online</td>
</tr>
<tr>
<td>Z1</td>
<td>PCM/Mini70, PPM/Mini72, WR285</td>
</tr>
<tr>
<td>Z2</td>
<td>DT269, PF211</td>
</tr>
<tr>
<td>Z6</td>
<td>DT282</td>
</tr>
<tr>
<td>Z7</td>
<td>WM281, WM291</td>
</tr>
<tr>
<td>EA2-HDPE</td>
<td>Easidew, Easidew I.S., Easidew PRO I.S., Easidew Online</td>
</tr>
<tr>
<td>I7-0-00-0</td>
<td>PCM/Mini70, PPM/Mini72, DT269</td>
</tr>
<tr>
<td>I7-0-00-1</td>
<td>PCM/Mini70, PPM/Mini72, WM281, WM291, DT269, DT282, PF211 (V)</td>
</tr>
<tr>
<td>I7-4-00-1</td>
<td>PF211 (mA)</td>
</tr>
</tbody>
</table>
Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Associated products</th>
</tr>
</thead>
<tbody>
<tr>
<td>A000030</td>
<td>19mm (0.75") Connector, no cable, with screw terminals</td>
</tr>
<tr>
<td></td>
<td>PC33, 52, 62 & 62V DT722</td>
</tr>
<tr>
<td>A000030XM</td>
<td>19mm (0.75") Connector, with cable (customer spec length)</td>
</tr>
<tr>
<td></td>
<td>PC33, 52, 62 & 62V DT722</td>
</tr>
<tr>
<td>A000031</td>
<td>19mm (0.75") Connector with 2m (6.5') cable</td>
</tr>
<tr>
<td></td>
<td>PC33, 52, 62 & 62V DT722</td>
</tr>
<tr>
<td>A000032</td>
<td>19mm (0.75") Connector with 5m (16') cable</td>
</tr>
<tr>
<td></td>
<td>PC33, 52, 62 & 62V DT722</td>
</tr>
<tr>
<td>A000033</td>
<td>12mm (0.47") Connector with 2m (6.5') cable</td>
</tr>
<tr>
<td></td>
<td>PCMini52</td>
</tr>
<tr>
<td>A000036</td>
<td>12mm (0.47") Connector with 5m (16') cable</td>
</tr>
<tr>
<td></td>
<td>PCMini52</td>
</tr>
<tr>
<td>A000037</td>
<td>12mm (0.47") Connector with 10m (33') cable</td>
</tr>
<tr>
<td></td>
<td>PCMini52</td>
</tr>
<tr>
<td>A000321</td>
<td>12mm (0.47") Connector without cable (with solder terminals)</td>
</tr>
<tr>
<td></td>
<td>PCMini52</td>
</tr>
<tr>
<td>A000321XM</td>
<td>12mm (0.47") Connector with cable (customer spec length)</td>
</tr>
<tr>
<td></td>
<td>PCMini52</td>
</tr>
<tr>
<td>A000322</td>
<td>12mm (0.47") Connector with 20m (65.6') cable</td>
</tr>
<tr>
<td></td>
<td>PCMini52</td>
</tr>
<tr>
<td>Item</td>
<td>Associated products</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>A000100</td>
<td>PC33, S2, 62 & 62V DT722</td>
</tr>
<tr>
<td>A000101</td>
<td>PCMiniS2</td>
</tr>
<tr>
<td>A000110</td>
<td>PC33, S2, 62 & 62V DT722</td>
</tr>
<tr>
<td>A000111</td>
<td>PCMiniS2</td>
</tr>
<tr>
<td>A000120</td>
<td>PC33, S2, 62 & 62V PCMiniS2</td>
</tr>
<tr>
<td>A000125</td>
<td>PC33, S2, 62 & 62V PCMiniS2</td>
</tr>
<tr>
<td>A000150</td>
<td>PC33, S2, 62 & 62V</td>
</tr>
<tr>
<td>A000340</td>
<td>SF52</td>
</tr>
<tr>
<td>FLA012</td>
<td>DT262, DT284, WR283, WR293</td>
</tr>
<tr>
<td>FLA019</td>
<td>DT269, DT282</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Associated products</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A01210</td>
<td>I7000, I7400</td>
</tr>
<tr>
<td>2510367</td>
<td>PFMini72</td>
</tr>
<tr>
<td>2510387</td>
<td>PF211</td>
</tr>
<tr>
<td>3420085</td>
<td>PF211</td>
</tr>
<tr>
<td>3401135</td>
<td>PF211</td>
</tr>
<tr>
<td>6A05130</td>
<td>I7000, I7400</td>
</tr>
<tr>
<td>6A06350</td>
<td>I7000, I7400</td>
</tr>
</tbody>
</table>
Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Associated products</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA2-CK</td>
<td>Easidew communications kit for EA2 - Enables connection to Easidew Transmitter and re-ranging & reconfiguration of output via configuration software</td>
</tr>
<tr>
<td>F035263</td>
<td>WM281, WM291 DT282, DT284 WR283, WR285 WR293,</td>
</tr>
<tr>
<td>330185</td>
<td>WM281, WM291 DT282, DT284 WR283, WR285 WR293,</td>
</tr>
<tr>
<td>GI-PF-01</td>
<td>Easidew PRO I.S. Easidew I.S.</td>
</tr>
</tbody>
</table>
Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Associated products</th>
</tr>
</thead>
<tbody>
<tr>
<td>A000350</td>
<td>SF52</td>
</tr>
<tr>
<td>A000351</td>
<td>SF52</td>
</tr>
<tr>
<td>EA2-SAM</td>
<td>Easidew Easidew I.S. Easidew PRO I.S. Easidew Online</td>
</tr>
<tr>
<td>CSB</td>
<td>Easidew Easidew I.S. Easidew PRO I.S. Easidew Online</td>
</tr>
</tbody>
</table>
Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Associated products</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS port adapter for Optidew</td>
<td>S503</td>
</tr>
</tbody>
</table>

Item 000180
- Ø18.5mm (0.73”) molded polymer port adapter (for Ø8mm (0.31”) probes)

Item 000190
- Ø18.5mm (0.73”) molded polymer port adapter (for Ø12mm (0.47”) probes)

Item 000200
- Blind stop Ø18.5mm (Ø0.73”)

Item 000263
- Door kit with 5 ports. 5 adapters to be specified

Item 000264
- Door kit with 5 ports and 25 adapters (5 x Ø19mm (0.75”), 4 x Ø12mm (0.47”), Ø13.5mm (0.53”), Ø15mm (0.59”), Ø18.5mm (0.73”), Ø24mm (0.94”) - and blind stops. Adapter tool included)

Item 000266
- Door with clear window - no ports

Item 000268
- Door without ports

Item 000269
- Door kit for use with MI Optidew. (Optidew dew-point sensor port adapter, PRT port adapter and 4 x Ø19mm (0.75”) adapters. Adapter tool included)

Item 000272
- SS port adapter for Optidew

Item 000273
- Polymer port adapter Ø18.5mm (0.73”) to Ø3mm (0.19”) (for Optidew probe)

Item 000277
- Blind stop for Optidew adapter

Item 000278
- Blind stop for PRT adapter

Item 000280
- Al adapter & blind stop (to be modified by customer) (M30x1)

Item 000280X
- Al port adapter a client specific & blind stop (M30x1)

Item 000281
- Al port adapter Ø12mm (0.47”) probe, blind stop (M30x1)

Item 000282
- Al port adapter Ø13.5mm (0.53”) probe, blind stop (M30x1)

Item 000283
- Al port adapter Ø14mm (0.55”) probe, blind stop (M30x1)
Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Associated products</th>
</tr>
</thead>
<tbody>
<tr>
<td>A000284</td>
<td>Al port adpt for ø15mm (0.59") probe, blind stop (M30x1)</td>
</tr>
<tr>
<td>A000285</td>
<td>Al port adpt for ø18.5mm (0.73") probe, blind stop (M30x1)</td>
</tr>
<tr>
<td>A000286</td>
<td>Al port adpt for ø19mm (0.75") probe, blind stop (M30x1)</td>
</tr>
<tr>
<td>A000287</td>
<td>Al port adpt for ø24mm (0.95") probe, blind stop (M30x1)</td>
</tr>
<tr>
<td>A000288</td>
<td>Al port adpt for ø25mm (0.98") probe, blind stop (M30x1)</td>
</tr>
<tr>
<td>A000290</td>
<td>M30x1 Molded polymer port adpt & blind stop (to be modified by customer)</td>
</tr>
<tr>
<td>A000290X</td>
<td>Polymer port adpt ø client specific & blind stop</td>
</tr>
<tr>
<td>A000291</td>
<td>Polymer port adpt for ø12mm (0.47") probe, blind stop (M30x1)</td>
</tr>
<tr>
<td>A000292</td>
<td>Polymer port adpt for ø13.3mm (0.53") probe, blind stop (M30x1)</td>
</tr>
<tr>
<td>A000293</td>
<td>Polymer port adpt for ø14mm (0.55") probe, blind stop (M30x1)</td>
</tr>
<tr>
<td>A000294</td>
<td>Polymer port adpt for ø15mm (0.59") probe, blind stop (M30x1)</td>
</tr>
<tr>
<td>A000295</td>
<td>Polymer port adpt for ø18.5mm (0.73") probe, blind stop (M30x1)</td>
</tr>
<tr>
<td>A000296</td>
<td>Polymer port adpt for ø19mm (0.75") probe, blind stop (M30x1)</td>
</tr>
<tr>
<td>A000297</td>
<td>Polymer port adpt for ø24mm (0.95") probe, blind stop (M30x1)</td>
</tr>
<tr>
<td>A000298</td>
<td>Polymer port adpt for ø25mm (0.98") probe, blind stop (M30x1)</td>
</tr>
</tbody>
</table>
Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Associated products</th>
</tr>
</thead>
<tbody>
<tr>
<td>A000171</td>
<td>S503, S904</td>
</tr>
<tr>
<td>0.25 kg (0.55lbs) desiccant (orange)</td>
<td></td>
</tr>
<tr>
<td>A000230</td>
<td>S503</td>
</tr>
<tr>
<td>Carrying case for the S503</td>
<td></td>
</tr>
<tr>
<td>A000240</td>
<td>S904, OptiCal</td>
</tr>
<tr>
<td>Drying module</td>
<td></td>
</tr>
<tr>
<td>A000242</td>
<td>S503, S904</td>
</tr>
<tr>
<td>Water bottle</td>
<td></td>
</tr>
<tr>
<td>A000243</td>
<td>S904, OptiCal</td>
</tr>
<tr>
<td>PRT sensor</td>
<td></td>
</tr>
<tr>
<td>A000265</td>
<td>S503, S904</td>
</tr>
<tr>
<td>Tool for changing the aluminum port adapters</td>
<td></td>
</tr>
<tr>
<td>HT961T00</td>
<td>S904, OptiCal</td>
</tr>
<tr>
<td>Control sensor</td>
<td></td>
</tr>
<tr>
<td>HT757T00</td>
<td>S503</td>
</tr>
<tr>
<td>Control sensor</td>
<td></td>
</tr>
</tbody>
</table>

Additional Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Associated products</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCAL-TC</td>
<td>Optical</td>
</tr>
<tr>
<td>Transport Case for OptiCal</td>
<td></td>
</tr>
<tr>
<td>OPT-V-01</td>
<td>S503</td>
</tr>
<tr>
<td>Optidew vision reference hygrometer with sensor</td>
<td></td>
</tr>
</tbody>
</table>
Applications for Humidity Sensors
Michell humidity sensors are used in hundreds of applications, including:

Agriculture
- Agricultural and Crop Research
- Agrochemical
- Environmental Testing
- Poultry/Meat/Egg/Dairy
- Greenhouses

Aerospace
- MIL Spec Welding
- Cabin Environment
- Environmental Testing
- Coatings
- Parts Storage
- Space Purge Systems
- Weather Monitoring

Automotive
- HVAC Manufacturing
- Dynamometer/Engine Test Cells
- Paint Booths
- In-Vehicle Air Quality
- Environmental Testing
- Metrology – Cal Lab
- Maintenance Alarms
- Compressed Air Dew Point

Bricks/Ceramics
- Ceramic Greenware Drying
- Product Quality
- Glaze Application
- Environmental Testing
- Concrete Curing

Chemical/Petroleum
- Polymerization
- Raw Material Testing and Storage
- Manufacturing Drying Processes
- Optimizing Production Costs
- Intermediates Storage
- Environmental Conditions
- Natural Gas Quality
- Environmental Testing

Coatings
- Powder Coating
- Adhesive Curing
- Adhesive Tape
- Application Test
- Maintenance Alarms
- Environmental Testing

Atmospheric
- Environmental Research
- Snowmaking Machines
- Soil Moisture
- Plant Growth Chambers
- Climatology
- Hydrometeorology

Environmental Chamber
- Electronics Test
- Climatic Stability Evaluation
- Product Testing on Animals
- Plant Growth Chambers
- Equipment Cabinet

Food/Beverage
- CO₂ Drying
- Drying Process
- Energy cost savings
- Environmental Testing

Fuel Cell
- Manufacturing
- Testing
- Fuel Monitoring
- Maintenance Alarms

Healthcare
- Stop Contamination
- Dental Casting Formulation
- Pill Coating
- Extend Shelf Life
- Environmental Testing
- Respiratory Therapy

High Tech
- Optical Coating
- Waveguide Pressurization
- Maintenance Alarms

HVAC
- Indoor Swimming Pool
- Control
- Climate Control
- Energy Use
- BMS, DCV and IAQ
- Hazardous Locations
- Outdoor Measurement

Industrial Applications
- Heat Treating
- Welding Hoods
- Adhesives
- Maintenance Alarms
- Environmental Testing
Applications

Leather/ Textile
- Dyeing/Printing
- Process Control
- Product Quality
- Storage & Transportation
- Maintenance Alarms

Marine
- Inert Gas Systems
- Lubrication Oil Monitoring
- Weather Observation
- Maintenance Alarms

Metallurgy
- Furnace Gas
- Lubrication and Quench Oil
- Dry Air Storage
- Sintering Furnace
- Maintenance Alarms
- Environmental Testing

Meteorology
- Professional Forecasting
- Agricultural and Forest
- Emergency Management
- Fire Hazard Warning
- Airport Weather monitoring
- Road and Rail Weather

Military
- Vehicle Air Quality
- Dry Air Storage
- Drive-in Chambers
- Weapons Test Chambers
- Torpedo Environmental testing
- Rocket Environmental testing
- Maintenance Alarms
- Environmental Testing

Museums
- Artifact Storage and Display
- Transportation
- HVAC
- Maintenance Alarms

Nuclear
- Containment vessel
- Dry Air Storage
- Assembly/Disassembly
- Encapsulation Research
- Maintenance Alarms

Packaging
- Product Storage
- Printing Labelling
- Development
- Environmental Testing

Paint
- Long Term Testing Outdoors
- Water Based Paint Booths
- Solvent Based Paint Booth
- Accelerated Life Testing
- Maintenance

Paper
- Process Air Exiting Hood
- Compressed Air
- Conversion/Storage Rooms
- Lubrication Oil
- Roof Protection
- Storage
- Distribution
- Pad Air/Gas
- Quality Control

Pharmaceutical
- Bioreactors
- Clean Rooms
- Compressed Air
- Incubators
- Stability Testing
- Packaging
- Storage & Transportation
- Production Areas
- Animal Test Facilities
- Tablet Coating
- Environmental Testing

Molded polymers
- Blow Molding PET
- Compressed Air
- Hopper Humidity
- HVAC – Manufacturing
- Extrusion
- Blown Film
- Printing & Labelling
- Pellet Storage
- Production Area
- Product Storage
- Injection Mold Preparation
- Shipping & Supply Chain
Applications

Power/ Energy
- Dew Point in SF6
- Compressed Air
- Gas Turbine Inlet Air
- Lubrication Oil
- H₂ Cooling Loop
- Bag Houses
- Transformer Maintenance
- Maintenance Alarms

Process
- Monitor Environments
- Adhesives
- Prevent Corrosion
- Prevent Contamination
- Preserve Texture
- Conserve Energy
- Environmental Testing

Rubber
- Natural Rubber Storage
- Tire Cord Storage
- Maintenance Alarms

Semi Conductor
- Clean Rooms
- Compressed Air
- Environmental Compensations
- Glove Boxes
- Lithium Battery Manufacturing
- Environmental Chambers
- Photo Resist Operations
- IC Packaging
- PCB Manufacturing
- Extended Life Testing

Storage
- Warehousing
- Museums
- Movement of Goods
- Container Testing
- Wine Barrel
- Fruit

Tobacco
- Tobacco Conditioning
- Cigarette Making
- Packaging
- Storage & Transportation
- Maintenance Alarms

Transportation
- Containers
- Storage
- Shipping
- Live Animal Shipments
- Cabin Monitoring
- Bulk Products
- Highway Icing
- Airport Weather

Wood
- Kiln Drying
- Laminates/By-product Drying
- Dry Air Storage
- Adhesive Research
1 What is humidity?

The word ‘humidity’ denotes the presence of water vapour in air or other gases. Water vapour is the gaseous form of water, and can be thought of much like any other kind of gas. It is normally transparent, and makes up about one hundredth (or one percent) of the air around us.

Humidity arises in practice because, in the same way that hot water gives off steam, so water at lower temperatures – including ice – also gives off water vapour. Wherever there is water or ice, there is evaporation (or its opposite, condensation). The extent to which this happens depends upon a number of factors, the most important of which is temperature. Similarly, other liquid or solid materials – most of which have some water content – will give off (or sometimes soak up) water vapour. Of course, water vapour can also be found in places where there is no liquid or solid nearby, for example in remote parts of the Earth’s atmosphere.

Air (or empty space, or any other gas) has a given capacity to absorb water vapour. This capacity depends mainly on temperature. Generally speaking, the hotter the air, the more water vapour it can hold. The graph in Figure 1 illustrates this.

At any particular temperature, air that contains its full capacity of water vapour, is said to be ‘saturated’. The ‘relative humidity’ of the air expresses how fully saturated it is with water vapour. A variety of other (‘absolute’) measures are used to express how much water vapour is actually present (irrespective of temperature or level of saturation).

Definition and explanations of the most important of these terms are given in the next Section.

1.1 Humidity terms and definitions

Some vocabulary specific-to-humidity and other common words with specialised meanings in this context are as follows:

Absorption (of water vapour) – retention (of water vapour) by penetration into the bulk of a material

Adsorption (of water vapour) – retention (of water vapour) as a surface layer on a material

Condensate – condensed material, e.g. liquid water or ice

Desorption – release of adsorbed or absorbed substance

Desiccant – any substance which exerts a drying action by chemically absorbing water vapour

Dry-bulb temperature – measured air temperature, usually paired with a ‘wet-bulb’ temperature to derive a value of relative humidity

Humidity – the presence of water vapour in air or other gas. Some people use ‘humidity’ to mean relative humidity only. Strictly speaking, ‘humidity’ also refers to all kinds of absolute indications of humidity. For very low humidity, other more specific terms, tend to be used

Hygrometer – any instrument for measuring humidity

Hygrometry – the subject of humidity measurement

Hygroscopic – tending to absorb water vapour

Inert gas – chemically non-reactive gas, such as nitrogen, helium, argon, etc

Moisture – commonly used to refer to liquid water or water vapour in any form, ‘moisture’ is also the term particularly used to mean water that is absorbed or bound into any material

![Figure 1. Saturation vapour pressure of water increases with temperature](image-url)
A Guide to the Measurement of Humidity

Probe – the part of an instrument that houses the sensor remotely from the main body of the instrument, e.g. at the end of a connecting electrical lead. In some situations the word ‘probe’ may be used to refer to an entire hygrometer. Also loosely used interchangeably with ‘sensor’ and ‘transmitter’. ‘Probe’ may also refer to a tube used to extract gas for measurement.

Sensor – the active or sensing part of a measuring instrument. There are some cases where a whole hygrometer is referred to as a ‘sensor’. Also loosely used interchangeably with ‘probe’ and ‘transmitter’.

Transmitter – instrument which normally gives an electrical output (analog or digital) rather than a displayed result. The sensing head may be an integral part of the transmitter or may be connected via an external cable. Also loosely used interchangeably with ‘probe’ and ‘sensor’.

Wet-bulb temperature – temperature indicated by a thermometer sheathed in wet wicking, and influenced by the rate of evaporation from the wicking. Usually paired with a ‘dry-bulb’ temperature to derive a value of relative humidity.

1.2 Definitions of measured quantities

Many of the following definitions are based on those in the British Standard BS 1339: 1965 (confirmed 1981, under revision in 1996), ‘Definitions, formulae and constants relating to the humidity of the air’. As given below, the definitions are explanatory rather than rigorous. For rigorous definitions, BS 1339 should be consulted. In practice, the usage of some terms varies according to the context: for example the terms in the field of air-conditioning are sometimes different from those used in meteorology for the same quantities. In each case a preferred term is given below, but qualifying notes indicate where there are common alternatives in use.

Units of measurement for expressing the quantities are given, and may have alternative forms, e.g. ‘grams per cubic metre’ is given by ‘g m\(^{-3}\)’, alternatively written ‘g/m\(^3\)’.

Absolute humidity – The mass of water vapour present in unit volume of moist air of a given temperature and pressure. SI (metric) units are grams of water per cubic metre of air (g m\(^{-3}\)). Older references may be in terms of pounds per million cubic feet (lb/ MMscf) or in grains per cubic foot (gr ft\(^3\)). (One grain 0.0648 gram).

NOTE: In chemical engineering the preferred term for this concept is ‘volumetric absolute humidity’, while ‘absolute humidity’ is used to denote the quantity referred to in this document as ‘mixing ratio’. In meteorology the preferred term is ‘vapour concentration’. Other terms such as ‘vapour density’, ‘mass concentration’ and ‘moisture content by volume’ are also sometimes used to mean the same thing.

USAGE: It is important not to confuse the particular quantity ‘absolute humidity’ with the general category of ‘absolute measurements of humidity’.

Dew point (or dew-point temperature) – The temperature at which dew, or condensation, forms, on cooling a gas. This is, in effect, the temperature at which air becomes saturated in equilibrium with water. Expressed in degrees Celsius (°C) or occasionally in other units of temperature (e.g. in degrees Fahrenheit (°F) in USA). See also frost point.

USAGE: Negative dew points, with respect to super-cooled water below 0°C, are always shown with a minus (−) sign. Where there is any risk of ambiguity, a plus (+) sign may also be used for positive dew points:

* e.g. ‘a range of dew points between −5 °C and +5 °C’

The term ‘dew point’ is often used generally to include ‘frost point’ (sec below). However in the range just below 0 °C, where either frost or dew (super-cooled water) can form, the values of dew point and frost point differ.

The use of initials (e.g. ‘dp’) is not a recognized abbreviation, but it occurs widely, and is used to distinguish clearly between dew-point temperatures and other values of (air) temperature. For example a dew-point value might be expressed in the form ‘1.0°C dp’

Enthalpy (of humid gas) – Measure of the total energy in a humid gas. Enthalpy is a function of the gas temperature and pressure, and of the moisture content, since water absorbs energy on changing from condensed state to vapour. Enthalpy is a useful concept in air conditioning, where it is important to know how much of the ‘stored’ energy will be consumed, or released, when the temperature or water content is raised, or lowered. Enthalpy of a gas can be defined as the sum of ‘sensible’ and ‘latent’ heat for each component in the gas. (See below for definitions of sensible heat and latent heat.) Values of enthalpy are conventionally expressed relative to a datum point (i.e. a zero or base line). For a dry gas, this is normally the heat content at 0°C. For water vapour, the enthalpy is usually expressed relative to the heat content of liquid water at 0.01°C.
A Guide to the Measurement of Humidity

Expressed in terms of energy per quantity of dry gas, i.e. kilojoules per kilogram (kJ kg⁻¹) (or other units, for example British thermal units per pound, Btu/lb).

Equilibrium relative humidity (ERH) (over a substance) – The value of relative humidity of the air, at which there is no net exchange of moisture with any nearby substance. This is used for indirectly indicating or controlling the condition of moisture-sensitive substances such as paper. Expressed as a percentage (%). (See also water activity.)

Frost point (or frost-point temperature) – The temperature at which frost forms on cooling a gas. This is, in effect, the temperature at which air is saturated in equilibrium with ice. It is the exact counterpart to dew point (though values differ). Expressed in degrees Celsius, °C, or occasionally in other units of temperature, i.e. in degrees Fahrenheit (°F), in USA. (See also dew point.)

Humidity ratio – Mixing ratio.

Latent Heat – Heat stored in a substance but not directly related to its temperature. For example, heat is stored in a gas because this heat was originally supplied to evaporate it. ‘Latent’ means ‘hidden’. Expressed in energy per unit mass of substance, i.e. joules per kilogram (J kg⁻¹). (See also enthalpy, sensible heat.)

Mixing ratio – Mass of water vapour per unit mass of dry air with which it is associated. It is a dimensionless ratio, but is often expressed in grams of water per kilogram of dry gas (g kg⁻¹) or in other units of mass.

For low levels of moisture content, this may be expressed in parts per million by weight, i.e. mass of water vapour per million parts mass of dry gas (ppm(w), or ppm(w)).

Mole – Amount of substance, which contains as many elementary entities as there are atoms in 12 grams of carbon 12. Expressed in moles (symbol, mol).

Mole fraction – The mole fraction of a component is the ratio of the amount (number of moles) of that component to the total amount of substance present. Expressed as a dimensionless ratio.

Partial pressure (of water vapour) – The part of the overall pressure exerted by the water vapour component in a gas. Expressed in units of pressure such as pascals (Pa) or in multiples; kilopascals (kPa) or megapascals (MPa), with non-SI alternatives such as millibar (mbar) or millimetres of mercury (mm Hg). 100 Pa = 1 mbar = 0.75mm Hg.

Parts per million – Abbreviated as ‘ppm’, it must always be stated whether this is by mass (weight) or by volume, and whether the figure is the ratio of water vapour to dry gas, or to total (moist) gas.

Parts per million by volume (ppmᵥ, ppm(v)) – Volume of water vapour per total volume of gas, for an ideal gas. Sometimes expressed relative to the total volume of moist gas (mole fraction times one million) or sometimes relative to the total dry gas. For small numbers of parts per million, the two are almost identical; at higher humidity they become significantly different.

Parts per million by weight, or mass (ppmₘ, ppm(w)) – Sometimes used to express the amount (mass) of water vapour relative to the total dry gas (mixing ratio times one million), but sometimes to express the amount relative to the total moist gas (specific humidity times one million). For small numbers of parts per million, the two are almost identical; at higher humidity they become significantly different.

Percentage saturation – The ratio of the actual mixing ratio to the saturation mixing ratio at the same temperature, expressed as a percentage (%).

Relative humidity – The ratio of the actual vapour pressure to the saturation vapour pressure over a plane liquid water surface at the same temperature, expressed as a percentage. This is commonly understood when the term ‘X percent relative humidity’ is used. For actual vapour pressure, e, and saturation vapour pressure, eₛ,

\[
\text{relative humidity (in %)} = \frac{e}{eₛ} \times 100 \quad (1)
\]

NOTE: When the mole is used, the elementary entities must be specified as atoms, molecules, etc.

Mole fraction – The mole fraction of a component is the ratio of the amount (number of moles) of that component to the total amount of substance present. Expressed as a dimensionless ratio.

Percentage saturation – The ratio of the actual mixing ratio to the saturation mixing ratio at the same temperature, expressed as a percentage (%).

Relative humidity – The ratio of the actual vapour pressure to the saturation vapour pressure over a plane liquid water surface at the same temperature, expressed as a percentage. This is commonly understood when the term ‘X percent relative humidity’ is used. For actual vapour pressure, e, and saturation vapour pressure, eₛ,

\[
\text{relative humidity (in %)} = \frac{e}{eₛ} \times 100 \quad (1)
\]

NOTE: When the mole is used, the elementary entities must be specified as atoms, molecules, etc.

Mole fraction – The mole fraction of a component is the ratio of the amount (number of moles) of that component to the total amount of substance present. Expressed as a dimensionless ratio.

Percentage saturation – The ratio of the actual mixing ratio to the saturation mixing ratio at the same temperature, expressed as a percentage (%).

Relative humidity – The ratio of the actual vapour pressure to the saturation vapour pressure over a plane liquid water surface at the same temperature, expressed as a percentage. This is commonly understood when the term ‘X percent relative humidity’ is used. For actual vapour pressure, e, and saturation vapour pressure, eₛ,

\[
\text{relative humidity (in %)} = \frac{e}{eₛ} \times 100 \quad (1)
\]

NOTE: When the mole is used, the elementary entities must be specified as atoms, molecules, etc.

Mole fraction – The mole fraction of a component is the ratio of the amount (number of moles) of that component to the total amount of substance present. Expressed as a dimensionless ratio.

Percentage saturation – The ratio of the actual mixing ratio to the saturation mixing ratio at the same temperature, expressed as a percentage (%).

Relative humidity – The ratio of the actual vapour pressure to the saturation vapour pressure over a plane liquid water surface at the same temperature, expressed as a percentage. This is commonly understood when the term ‘X percent relative humidity’ is used. For actual vapour pressure, e, and saturation vapour pressure, eₛ,

\[
\text{relative humidity (in %)} = \frac{e}{eₛ} \times 100 \quad (1)
\]
A Guide to the Measurement of Humidity

USAGE: The phrase 'relative humidity' is commonly abbreviated RH although this is not a recognized abbreviation. Values of relative humidity are commonly expressed in units of percent relative humidity (% RH).

Care must be taken when expressing uncertainties, changes or fractional differences in relative humidity. For example, the difference between 50% RH and 52% RH is 2% RH. This can also be expressed as a difference of 4% of value. It is important to distinguish clearly between these two kinds of statement.

Saturation vapour pressure (of water) – Maximum pressure of water vapour that can exist at a given temperature. Expressed in units of pressure e.g. in pascals (Pa), or in non-SI units such as millibars (mbar) or millimetres of mercury (mm Hg).

Sensible heat (of a gas) – Energy that resides in a gas according to its temperature. Expressed in terms of energy per mass of gas, e.g. in joules per kilogram (J kg⁻¹), or equivalent units. (See also enthalpy, latent heat.)

Specific humidity – Mass of water vapour per unit mass of humid air. May be expressed as a dimensionless ratio, or in grams of water per kilograms of humid gas (g kg⁻¹) or in kilograms per kilogram (kg kg⁻¹).

Vapour pressure – That part of the total pressure contributed by the water vapour. Expressed in units of pressure e.g. in pascals (Pa), or in non-metric units such as millibars (mbar) or millimetres of mercury (mm Hg).

Water activity (of a substance) – Water activity (a) is the relative humidity, which is eventually reached in a closed space where a hygroscopic substance, such as a foodstuff, has been placed. It is the same as equilibrium relative humidity (ERH) except that it is expressed on a scale of 0 to 1 (no units), instead of 0% to 100%. Water activity is particularly used in connection with foodstuffs. (See also equilibrium relative humidity.)

2 Significance of temperature and pressure for humidity measurement

2.1 The effects of temperature on humidity measurement

The effect of temperature on humidity is highly significant. Failure to take this into account can sometimes lead to errors so large that the measurement is meaningless. In many situations, the largest single source of uncertainty in a humidity measurement is the effect of temperature differences from place to place in the process, room or chamber. The importance of considering the temperature effects carefully cannot be overstated when relative humidity is the parameter of interest.

Temperature and condensation

One common cause of error in humidity measurement is the occurrence of unwanted condensation. Condensation can occur at cold spots, which are below the dew point of the gas. In sampling systems, any condensation totally invalidates the sampling process, since it changes the water vapour content of the gas. To prevent condensation, sample systems should always be kept at a temperature above the maximum dew point, by heating them if necessary.

Temperature and absorption or desorption of water

Many materials contain moisture as part of their structure; particularly organic materials, salts, and anything which has small pores. The quantity of water in these materials depends on the humidity of the surrounding gas, and on the temperature. When the temperature changes, water migrates from the material to the surrounding gas or vice versa. Like condensation, this can cause changes in the measured humidity. However, unlike condensation, there is not usually a critical temperature: whenever the temperature changes, water moves between the material and the gas.

When measuring low dew points, desorption or absorption of water vapour as the temperature changes can produce very large errors in measurement. Even in normal ambient conditions, absorption or desorption can begin to be significant, depending on the type of material.

Temperature and saturation vapour pressure of water

The saturation vapour pressure of water depends strongly on temperature. Near room temperature, the air’s capacity to hold water vapour doubles for every 10°C increase in temperature. The steepness of this variation gradually changes across the temperature range. At 80°C the saturation vapour pressure doubles for every 20°C rise. At -60°C the saturation vapour pressure doubles for only a 5°C rise in temperature.

Temperature and relative humidity

Relative humidity is highly dependent on temperature – especially so because vapour pressure appears twice in the formula for relative humidity,

\[
\text{relative humidity (in %)} = \frac{e}{es} \times 100
\]

(e is the water vapour pressure, and es is the saturation vapour pressure at the prevailing ambient temperature.)
A Guide to the Measurement of Humidity

Table 1. Effect of a temperature change of 1 °C at various levels of temperature and relative humidity. The change in the relative humidity levels is not symmetric.

<table>
<thead>
<tr>
<th>Relative humidity</th>
<th>Temperature</th>
<th>10°C</th>
<th>20°C</th>
<th>30°C</th>
<th>40°C</th>
<th>50°C</th>
<th>60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% RH</td>
<td>±0.7% RH</td>
<td>±0.6% RH</td>
<td>±0.6% RH</td>
<td>±0.6% RH</td>
<td>±0.5% RH</td>
<td>±0.5% RH</td>
<td></td>
</tr>
<tr>
<td>50% RH</td>
<td>±3.5% RH</td>
<td>±3.2% RH</td>
<td>±3.0% RH</td>
<td>±3.0% RH</td>
<td>±2.6% RH</td>
<td>±2.3% RH</td>
<td></td>
</tr>
<tr>
<td>90% RH</td>
<td>±6.3% RH</td>
<td>±5.7% RH</td>
<td>±5.7% RH</td>
<td>±5.4% RH</td>
<td>±4.6% RH</td>
<td>±4.1% RH</td>
<td></td>
</tr>
</tbody>
</table>

Roughly speaking, at room temperature, a change in dew point of 1°C corresponds to a change in relative humidity of 6 percent of the relative humidity value. For example at 50% RH, an uncertainty in dew point of ±1°C corresponds to an uncertainty of ±3% RH.

A change of 1°C in the measurement of the ambient temperature has almost exactly the same significance. The size of the effect under different conditions is illustrated in Table 1.

Overall, a useful rule of thumb is that ±1°C uncertainty in either dew point or temperature leads to an uncertainty of ±6 percent of the relative humidity value.

A note on temperature measurement in air
A thermometer indicates its own temperature. It is important to note this because a thermometer may not always be at the same temperature as its surroundings. Thermometers can be influenced by the temperatures of other objects nearby (not the ones which are intended to be measured). Thermometers can also suffer from time lags, and self-heating errors may affect electrical resistance thermometers. All these effects are at their worst when a measurement is undertaken in air, as opposed to in liquid. Errors from these sources can easily amount to several tenths of a degree, so the effects on relative humidity can be significant, as shown above.

2.2 The effects of pressure on humidity measurement
Since all measurements of humidity stem from the measurement of a vapour pressure of water, it follows that variations in overall pressure of the gas system may have an effect on the measured humidity. Throughout this document, the values of pressure are given in absolute terms (atmospheric pressure being 101325 Pa, or 1013 mbar), and not in ‘gauge’ pressures (where atmospheric pressure would have a value of zero).

In a gas mixture such as room air, the total pressure $P_{(total)}$ of the system can be expressed as the sum of partial pressures:

$$ P_{(total)} = P_{(nitrogen)} + P_{(oxygen)} + P_{(water)} + P_{(others)} \quad (3) $$

It therefore follows that if any of the partial pressures of the component gases varies, the total pressure $P_{(total)}$ will vary. Also, if the total system pressure is changed, either by compression or expansion, each of the component partial pressures will BE changed by a similar factor to $P_{(total)}$.

This basic rule can be applied to any measure of humidity to predict the effect of changes in either component or overall pressures. Below are some simple examples showing the effect of pressure change.

Effect of doubling pressure on a relative humidity of 40% RH at constant temperature, without changing composition
Relative humidity is expressed as a ratio of vapour pressures (the actual vapour pressure relative to the saturation vapour pressure). Doubling $p_{(total)}$ will yield a similar doubling of $p_{(water)}$. If the saturation vapour pressure remains unchanged (i.e. if temperature is unchanged) then a relative humidity of 40% RH would be doubled to 80% RH.

As a general approximate rule, the actual relative humidity value can be multiplied by the fractional change in total system pressure to give the resultant value of relative humidity. NOTE: Where the result exceeds 100% RH, condensation WILL occur.

This rule is similar for other measures of concentration in terms of mass per unit volume, such as absolute humidity (g m$^{-3}$).

Effect of doubling system pressure on mixing ratio, without changing composition
The mixing ratio of water in a gas system is simply the ratio of the mass of the water vapour to the mass of the dry gas.
Humidity and Dew-Point Instruments

A Guide to the Measurement of Humidity

If any gas is compressed or expanded without adding or removing components, then the mass of all components is unchanged. Therefore the mixing ratio is unaltered by the pressure change. This can also be deduced from the fact that the definition of mixing ratio does not involve pressure or temperature.

The rule is similar for other dimensionless measures of concentration (those expressed in mass per unit mass, or volume per unit volume), such as mole fraction and specific humidity, including cases where these are expressed in terms of parts per million.

Effect of doubling system pressure on dew-point temperature, without changing composition

The dew-point temperature of a System is directly related to the water vapour pressure of that system. From equation (2) it can be seen that a doubling of total pressure \(p(\text{total}) \) will yield a doubling of the water vapour pressure, \(p(\text{water}) \). Reference to vapour pressure tables will allow the new dew-point temperature to be calculated.

For example, for a system of pure water vapour with a dew point of +10°C, the water vapour pressure is about 1228 Pa. If the system pressure is doubled, the resultant water vapour pressure will be \(2 \times 1228 = 2456 \) Pa, which equates to a dew-point temperature of about +20.8°C.

For dew points in the presence of air or other gases (rather than pure water vapour alone), a correction may need to be made for the water vapour enhancement factor (see below).

Water vapour enhancement factor

The examples above assume that all the component gases exhibit ‘ideal gas’ behaviour. In practice a small, pressure-dependent correction may be required: the ‘water vapour enhancement factor’.

In air, this numerical correction is less than 1% of value when pressure is doubled from atmospheric pressure. For a tenfold increase from atmospheric pressure, the effect is between about 1% and 10% of value, depending on the dew point of the gas.

3 Selection of a type of hygrometer

3.1 Identifying measurement needs

To ensure ‘fitness for purpose’ it must be clear first of all what is the purpose. Is a humidity measurement needed at all? If so, what use is it to the business or process?

To be useful, how should the results be expressed? Is the measurement to meet a practical need, or to comply with a documented specification, and is the specification meaningful and realistic? Once the need and aim of making the measurement is clear, it is important to decide what factors are relevant to achieving this aim. The user should consider the following issues:

3.2 Measurements required

Relative or absolute – Which unit or scale of measurement? The quantity of interest may be relative humidity, dew point, or some other measure of the concentration of water vapour.

It is best to select a method of measurement which intrinsically detects the quantity of interest. Many hygrometers display results in terms of two or more humidity parameters. This is often useful, but it should be understood that normally only one parameter is being measured, and the other values are the result of numerical conversions. Because of this, an instrument might give a reliable indication of only one of the parameters shown, while providing a less good indication of the other parameters.

Range (humidity and other variables) – Different types of measurement are suited to different ranges of humidity. It is best to avoid using an instrument at the upper or lower extreme of its range of measurement. Ranges of temperature, flow rate, and pressure or vacuum also need to be specified in order to select the best instrument.

For example, where use at elevated pressure is planned, the construction of the instrument may be as important as the operating principle. On the other hand, for some types of measurement, a correction may have to be applied to the results if the pressure varies.

Performance – It is worth deciding if any particular performance characteristics are important for the application in question. There may be a need to set criteria for sensitivity, stability (in terms of repeatability or reproducibility), uncertainty, response time, resolution, linearity or hysteresis.

Output, readout – The humidity result may simply be shown as a number on a digital display, or on a numbered scale. It may be given as an electrical voltage or current signal (analog output). Several parameters or units of humidity may be shown, together with temperature. Readings may be given continuously or at intervals.

3.3 Instrument format and usage
A Guide to the Measurement of Humidity

Sampling – Sampling is an important issue in all humidity measurement. The sampling approach may be that of ‘immersion’, where the instrument sits wholly or partly in the environment to be measured; or the gas may be ‘sampled’ by extracting it to the instrument through a tube. Some immersion sensors benefit from being in still air, some from being in moving air, and for some the flow rate of air is critical. When measuring gases with very low water content, the quality of the sampling pathway is critical; hygroscopic materials in the pathway can change the water content of the sample. Also, care must be taken with certain types of hygrometer, which may themselves affect the environment, by giving off either water or heat. (Indeed any instrument introduced at the wrong temperature will influence its environment, affecting the measurement result.) Conversely, moisture and heat from the operator may affect measurements using hand-held hygrometers.

Type of gas – In gases other than air, chemical compatibility may be an issue. Calibration specific to the gas in question may be required.

Materials of construction – Aside from considering the hygroscopic nature of materials, other aspects of suitability may need to be addressed. Some materials may be chemically incompatible with the environment of interest. Materials may be unacceptable for other reasons, such as avoidance of Molded polymers and glass for reasons of hygiene or safety.

Ease of use – Some hygrometers are straightforward to use. Others require some skill.

Use for control or monitoring – In some gases the user simply needs to measure humidity. In others, the humidity measurement is fed into a process of control of humidity. If so, then access to the electrical output in some form is usually necessary. For use in control of humidity, the response time and the degree of hysteresis are usually important.

Hazardous areas – In areas where there is some hazard, such as an explosive atmosphere, suitable precautions must be taken. For example, extraction of sample gas to remote probes may reduce the risk in some cases, while other sensors can be designed to be intrinsically safe, by limiting the electrical power to a level low enough that it cannot ignite the atmosphere. Where this is a concern, an appropriate certification of intrinsic safety should be sought.

End use – Humidity itself may be of interest, or humidity may be used as an indication of the moisture content of other solid or liquid substances. If so, it may give no more than a very indirect indication of the actual content, though ERH and water activity are proper indications, in a different way, of the condition or equilibrium of materials with the environment.

Calibration – Method of calibration, and ease of doing so, should be considered. Even when there does not appear to be a call for highly accurate results.

Robustness – Both hygrometer sensors and casings vary in their robustness against condensation, drying out, temperature extremes, dust, chemical or other contamination, vibration, or even simple handling.

Versatility – If more than one kind of use is envisaged, the adaptability of the hygrometer should be borne in mind.

Interchangeability – It may be desirable to have a set of hygrometers which can be used interchangeably, or to substitute other probes for use with the main body of the hygrometer. It may be necessary to replace components of the sensor which might fail. In any of these cases, it is important to consider how interchangeable the instruments or components really are. Interchangeability is best ensured by calibration against a consistent reference. However, replacing a key component of an instrument may invalidate its previous calibration.

Maintenance – Some types of hygrometers need routine cleaning, regeneration, or replacement of parts.

Availability of spares – It may be worth knowing about spare parts; whether they can be fitted by the user, and whether they are freely available locally and quickly. Any consumable supplies, such as charts, should be available and clearly coded or identified, as they are not always interchangeable.

After-sales service – The availability of a warranty, or of a good maintenance or service contract may be a factor in the decision.

4 How to interpret the data sheet information?

Detailed below are technical terms used to make statements about instrument performance, as typically found in manufacturers’ data sheets. They are:
A Guide to the Measurement of Humidity

- range
- resolution
- uncertainty (accuracy)
- repeatability
- reproducibility
- non-linearity
- hysteresis
- response time
- long-term stability
- temperature coefficient

This list is not exhaustive, although it indicates the most important specifications to consider when selecting an instrument. Practical considerations such as dimensions, power supplies and output signals, may have little or no significance to the measurement performance characteristics of the unit. However, these practical elements should be carefully selected if the instrument is to meet the full working requirement of the application.

Each characteristic is explained separately below. However, although separately defined, it is not always possible in practice to distinguish between some of them.

Formal definitions of these terms are given in the ISO document 'International Vocabulary of Basic and General Terms in Metrology' (Second edition, 1993).

Measuring range
The stated measuring ranges for temperature and humidity provide guidance as to the upper and lower temperature and humidity environments to which the instruments sensors can be applied. Often an additional specification: operating range (electronics) is also stated; this confirms the conditions in which the instrument’s electronics (other than the sensor, or probe) can safely operate. Where a maximum or minimum humidity is stated, it is often the case that the humidity sensor will be damaged if these limits are exceeded.

Resolution
Where an instrument features a display of its measured values, the indication will have a resolution of, say, 0.1% RH or 1% RH. Specification of this in the data sheet simply informs the user to what degree of precision the measurement can be noted. Resolution may not significantly affect the uncertainty of measurement, except in the case of a coarse resolution of, say, 1% RH, where the display will round the actual value up or down to the nearest significant figure, thereby introducing an additional error of up to ±1% RH, depending on the method of rounding.

Uncertainty (accuracy)
The uncertainty of a measurement is defined as the parameter characterising the range in which the ‘true value’ can be expected to lie. It defines a ‘margin of doubt’ about a reading or estimated value, together with a level of confidence (normally 95%) that the ‘true value’ will lie within this range.

NOTE: Often, the uncertainty for an instrument is specified for ideal operating conditions at a temperature of 20°C or 23°C. However, further contributions such as hysteresis, linearity, reproducibility and temperature dependence will need to be taken into account when estimating the overall uncertainty for an instrument. The method of use may make an important contribution to the overall uncertainty achieved.

Strictly speaking, ‘accuracy’ is a qualitative term only. For example, an instrument or measurement might be described generally as ‘accurate’ or ‘not accurate’. If accuracy is to be quantified, it should be expressed in terms of uncertainty, for example, ‘... an uncertainty of ±5% RH ...’ (not ‘... an accuracy of ±5% RH ...’). However, the word ‘accuracy’ continues to be used loosely in specifications to refer to the maximum difference that can be expected between the reading given by an instrument and the ‘true value’ being measured.

Repeatability
In general terms, the repeatability of an instrument is the closeness of agreement of multiple readings repeated under the same conditions of measurement. To quantify repeatability, the spread or dispersion of results may be quoted, e.g. in terms of a standard deviation of a number of readings.

Reproducibility
In general terms, reproducibility is an instrument’s capacity to reproduce a previous measurement. This may be at a later date, or after undergoing significant changes in conditions, for example, after a change of operator, or of location. To quantify reproducibility, the spread or dispersion of results may be quoted, e.g. in terms of a standard deviation of a number of readings.

Non-linearity
In an ideal world, if a calibration were carried out at two points in a measurement range (high and low) the instrument would behave similarly at values in-between. However, it is usual to find some deviation from this ideal, due to non-linearity of the sensor. In other words most sensors exhibit a calibration curve, as opposed to a straight line.
A Guide to the Measurement of Humidity

The deviation from the ideal calibration line will have a maximum or minimum, usually expressed in the form: ‘Non-linearity ±0.5% RH’, at a given temperature. It should also be noted that linearity characteristics can be significantly affected by temperature. When having an instrument calibrated, linearity is a factor to bear in mind when deciding how many measurements are needed and at what intervals throughout the range of measurement.

Hysteresis
Hysteresis, in general terms, is the dependence of a reading upon whether the condition is approached from above or below the value of interest. For example, given a humidity cycle of say 10% RH to 50% RH to 90% RH and back to 50% RH, most hygrometers would not give an identical reading on both occasions at 50% RH.

Hysteresis is related to repeatability, but includes any ‘directional’ effect.

Hysteresis should be considered if the measurement is to be used for control purposes, for example to activate on-off control of air conditioning.

Response time
Response times are included in specifications to provide an indication of how long the instrument takes to react to changes in the applied condition. While the sensor itself may have a particular response time, any screening of the sensing element, e.g. by a protective filter, will slow down this response. Effective air movement will speed it up. (Constant and specified air flow is required for a response time test.) Response times are practically always slower for falling humidity than for rising humidity.

Quantitatively, response times are usually quoted in terms of the time taken to register 63% of a step change in the applied condition (although other conventions are sometimes used, e.g. 90%).

Response times are usually quoted for the hygrometer alone, at constant temperature. However, response times of the associated sampling systems may be much greater. Optimistic specifications of response time may raise false expectations for the user to see stable measurements after very short time periods. However, for most relative humidity measurements, the time taken for the sensor and nearby materials to equilibrate with respect to temperature is by far the most significant factor influencing the response time. For measurements of dry gases, equilibration of moisture in the sampling system is usually the key influence.

Long-term stability
The measurement characteristics of any instrument will change with respect to time, due to gradual changes in electrical or material components. Estimates of long-term stability or drift, refer to the likely change in the instrument’s measurement performance with respect to time. Regular checks of calibration should be made to quantify this potential problem. Although it may sometimes be desirable to adjust the hygrometer reading in the light of drift, performance could be compromised by the adjustment process, and the overall drift characteristics could be masked by frequent adjustments.

Quantitatively, drift may be expressed in terms of a time span and a figure. However, if an instrument was subject to drift of less than 4% RH per year, it would not follow from this that the drift over six months would be less than 2% RH (though it could be expected to be somewhat less than the annual figure). Drift is not always consistent, and measurements of drift always include some contribution from short-term variability.

Temperature coefficient
Temperature variation has a most significant influence on relative humidity itself. In addition, every humidity sensor has a temperature coefficient, which can be simply explained as a change in measurement characteristic at a different temperature. A temperature coefficient might be expressed, for example, as 0.1% RH per °C, which could result in an additional 5% error when measuring at a temperature 50°C away from the calibrated temperature.

5 What is calibration?
Calibration is the process of comparing a measuring instrument against an authoritative reference for the same type of measurement, to identify any bias or systematic error in the readings. The outcome of a calibration is normally a certificate listing any corrections that need to be applied to the values indicated by the instrument, together with an estimate of the uncertainty in the calibration, and other relevant information. For example, a calibration of a given instrument at, say, 50% RH, might show it to read too high by 1% RH. If so, a required correction of −1% RH would be shown on the certificate.

Calibration is often taken to mean ‘adjustment of the instrument to read correctly’. This is not true. Calibration and adjustment of an instrument are quite separate concepts, and the two should not be confused. Thus, when arranging for the calibration of any instrument, it is important to establish clearly whether or not the instrument is to be adjusted as well as calibrated. If so, it should be specified whether calibration information is required only after adjustment, or whether results are also required for the initial or ‘as found’ condition.
Any calibration corrections identified on a certificate of calibration should be applied to measured values obtained using that instrument. If the calibration corrections cannot be applied, the quoted uncertainty in the results should include an allowance for this.

What is checking?
A measurement check is not the same thing as a calibration. A check is a test to confirm whether or not some condition is fulfilled (for example to confirm that the performance of an instrument has not drifted). The outcome of a check is not normally a certificate of calibration. However, checks of a measuring instrument against another (stable) instrument are often useful at intervals in between calibrations.

6 Recommended practices in humidity measurements

6.1 General practical recommendations
- Where relative humidity is of interest, a direct measurement of relative humidity is usually best. Where an absolute measure of humidity is needed, choose dew point, vapour pressure or similar measurements.
- Establish the measurement requirements at the purchasing stage in order to have the right instrument for the job.
- Allow hygrometers to equilibrate in any new environment. This is particularly necessary after changes in temperature due to transportation or storage. Depending on the instrument and on how great the change in conditions, this may require from only a few minutes to many hours.
- Follow Michell Instruments’ care instructions for the instrument. Some instruments need routine cleaning or other maintenance. Before using any solvent cleaner, check with Michell Instruments that this will not harm the sensor or other materials of construction.
- Wherever possible, ensure that hygrometers are calibrated under the conditions of use, i.e. at similar values of humidity and temperature, and (if relevant) in similar conditions of pressure, airflow, etc.
- Keep a record of calibrations and any adjustments to the hygrometer. This will show the long-term stability of the instrument and allow the associated uncertainty to be assessed.
- Check instruments, if possible, at intervals between calibrations, by comparison with another (stable) instrument, to monitor for long-term drift. Routine checks are also useful before and after subjecting an instrument to transportation or other stress, which might lead to a shift in its performance. Where the check is against two (or more) instruments this is even better: not only does this add confidence, but in the event of one instrument drifting among a set of three, it can be seen which reading is most suspect.
- Cleanliness of the environment will affect different hygrometers in different ways. Dust and airborne droplets should be avoided or filtered out if possible. Contaminants can come from the most surprising sources, ordinary urban pollution, for example.
- The readings given by some types of hygrometer are sensitive to gas type. For any instrument which reads in terms of mass per unit volume, e.g. in grams per cubic metre, it must be confirmed whether the calibration is valid for the gas in use.
- Avoid using instruments in direct sunlight or near any other source of heat, unless they are suitably shielded to prevent measurement errors.

6.2 Sampling in general
- Relative humidity measurements should be carried out at a representative temperature. Failure to allow temperature equilibration will lead to a false indication of the relative humidity.
- Variations in vapour pressure from place to place can occur where an environment is subject to any addition or removal of water. If so, care must be taken over where to make a measurement in order to obtain a representative result.
- Sources and sinks of water vapour should be avoided in any sampling system. Invasion of stray water can be minimised by attention to leaks, hygroscopic materials, droplets and condensation. The lower the humidity, the more critical these precautions are.
- Hygroscopic materials should be avoided. Many materials contain moisture as part of their structure, particularly organic materials (whether natural or synthetic), salts (or anything which contains them), and anything which has small pores. Temperature changes can increase the tendency of these materials to affect the humidity of the surrounding air.
Humidity and Dew-Point Instruments

A Guide to the Measurement of Humidity

- Condensation in a sampling process can invalidate humidity measurements by reducing the water content of the gas being measured. What is more, condensed liquid may alter the humidity elsewhere by dripping or running to other locations and evaporation there. In these circumstances, measurement results may be misleading if hygrometer location is not considered carefully.

- Water droplets or mist must be avoided. These can result in overestimates of the humidity of the air between the droplets. Such results may exceed 100% RH, or may be impossible to interpret meaningfully. Droplets of liquid also damage some electrical types of humidity sensor. Filtering the air sample can eliminate droplets.

- If pumps are used for sampling gas, these should be located after the hygrometer, to avoid contaminating the measurement environment. Where possible, oil free pumps should be used, or filters employed. Oscillations in pressure due to pumping can sometimes be reduced or buffered using a needle valve or a reservoir of large volume.

- Special treatments such as filtration can change the amount of moisture in a gas. Some drying agents take out other gases, too.

- When sealing any sensor or probe into a port or manifold in a duct or chamber, leaks through the probe or electrical cable should be considered. These are not always sealed against passage of ambient air.

- Where sampling involves a step change in temperature, pressure or gas flow rate, relative to the process being sampled, results may need to be converted or interpreted. For example ‘pressure dew point’ will differ from the value found after expanding the gas sample to atmospheric pressure. Care should be taken to distinguish between ‘gauge’ and absolute values of pressure.

- For measurements in the region below 0°C it must be clear whether the condensate is dew or frost. Failure to distinguish between these can result in errors of about 1°C for every 10 °C below zero.

6.4 Relative humidity in general

- Due care must be taken of temperature.

- Care must be taken when expressing uncertainties, changes or fractional differences in relative humidity. For example, the difference between 50% RH and 52% RH is 2% RH. This can also be expressed as a difference of 4% of value. It is important to distinguish clearly between these two kinds of statement.

6.5 Recommendations specific to ranges of measurements

- Ambient humidity - Avoid using hygrometers near the body, which is a source of heat and moisture. Do not breathe close to the measurement.

- High humidity, above the ambient range - Ample lines should be maintained above the dew point of the gas being measured, to avoid condensation. Electrical trace heating is often the most practical method.

- Low humidity, and very dry gases - If possible, prepare for measurements by flushing sample lines and hygrometers with dry gas, or by evacuating to low pressure. Drive off stray residual water by baking assemblies if possible (but not instruments – unless designed for this!). The lower the moisture content to be measured, the more dramatically the required drying time multiplies.

- Avoid hygroscopic materials. At low humidity (anything much below a dew point of 0°C) the amounts of water given off by organic and porous materials can dramatically affect the value of humidity. The lower the level of moisture, the more significant the effects.

- Choose impermeable materials, to avoid inward diffusion of moisture through sampling tubes and enclosures. Steel and other metals are practically impermeable. PTFE ("Teflon") is only slightly permeable and will usually be satisfactory for dew points above -20°C, and sometimes below this level. Materials such as PVC and rubber are relatively permeable and so totally unsuitable at low humidity, and not really satisfactory in any humidity range.
A Guide to the Measurement of Humidity

- Surface finish of pipework is important for very dry gases. Even the tiny quantities of water adsorbed on the surfaces of non-hygroscopic materials can have significant effect. Polished or electropolished steel is recommended for the best results.

- Clean environments are always best for humidity measurements, but this is especially critical at very low humidity. Even fingerprints harbour water. High purity cleaning agents are recommended: Analytical Reagent (AR) quality solvents for oil-based contaminants, and purified water (distilled or deionized) for salts. Cleaning should be followed by thorough drying by a clean method.

- Sample tubing should be as short in length as possible. The surface area should be minimised by using the narrowest tubing that the flow conditions will permit.

- Avoid leaks. Minimising the number of connections (elbows, tees, valves, etc.) helps with this.

- Adequate flow of the gas sample should be ensured, to minimise the influence of sources of stray water in the flow path.

- ‘Dead ends’ should be avoided, as they cannot easily be flushed.

- Back-diffusion of moisture should be minimised, e.g. by fast flow rates of gas, long exhaust tubes after the sensor, or by valves which isolate the low-humidity region from ambient air.

6.6 Practical recommendations for specific types of hygrometer

Relative humidity capacitive sensor

- Care should be taken to avoid mechanical shock (impact) or thermal shock (sudden temperature changes). Sensors should be protected from steam or water sprays, and from direct sunlight.

- Where a sensor is at risk of exposure to dust, droplets, or the occasional knock during handling, the appropriate guard or filters for the sensor head should be used.

- Any temptation to breathe on the sensor, or to wave it over cups of tea, etc. should be resisted. Filters and saturation guarding may protect the sensor, but these actions carry a risk of damage by condensation or other contamination.

- Protective filters can slow the response time of sensors. This can be avoided by removing any filter, but the benefit must be weighed against the risk of damage to the sensor.

- Sensors should not normally be submerged in liquids. In the case of a resistive (electrolytic) sensor, water or other liquids would certainly damage the sensor beyond repair.

- Salt solutions are especially commonly used for calibration of electrical sensors, and should be provided with traceability directly or via a calibrated hygrometer. Protection of sensors from direct contact with salt or solution is most important as contamination would destroy or seriously impair the sensing element.

Impedance dew-point hygrometer

- Sensors constructed using aluminium oxide or ceramics essentially respond to vapour pressure. They are often used at high pressure, or to sample gas originating from systems at high pressure. If so, care must be taken to ensure that the sample pressure is known, and a correction applied if necessary.

- As for other electrical sensors, filtration should be used to protect from dust and droplets or mist.

- Regular calibration is particularly important for ceramic hygrometers. The calibration intervals may be dependent on usage.

- Aluminium oxide sensors normally exhibit a temperature coefficient, which may be partially compensated within the instrument, but not totally. If the hygrometer must be used at a temperature, other than that at which it was calibrated, ensure that any necessary correction to the reading is made, and that any resulting uncertainty is taken into account.

- When using the sensors at low levels of moisture, the precautions listed above under ‘sampling’ and ‘low humidity’ should be observed.
HygroCal100
Humidity Validator
A new, compact, portable system for simple automated validation of relative humidity probes.

Highlights
- Truly portable at 3.2kg, and completely self-contained
- Intuitive UI makes automating probe verification simple
- Integral battery pack means validation can be done without access to services
- Validate 7 probes simultaneously
- Automated validation procedures for complete hands-off probe verification
- Internal calibration correction cycle ensures continued confidence
- Optional chilled mirror reference hygrometer, allowing use as a calibrator
- Download logged verification data direct to USB memory

Applications
- On-site or in-lab verifications
- Validation of RH probes at pharmaceutical manufacturing facilities
- Validation of RH probes at meteorological offices
- Validation of RH probes in food manufacturing
HygroCal100 Humidity Validator

The all-in-one validation package for your humidity sensors

The HygroCal100 provides a stable test chamber to quickly evaluate the performance of relative humidity sensors across a wide range of 5 to 95% relative humidity. The intuitive design allows the probes under test to be fully integrated with the chamber and user interface (UI), so up to 7 probes with a variety of diameters and output signals can be powered, monitored and logged simultaneously by one self-contained unit.

A 4.3" LCD touch-screen runs a powerful UI, which displays all measured values from the reference and probes under test, along with a graphical trend indication of chamber stability. It is also capable of automating complete validation procedures with ease, and providing a complete logged output in csv format straight to your USB memory device, to minimize the time you spend taking readings.

Chamber Integrity

The HygroCal100 has a test chamber milled from a solid piece of Acetal, with minimal sealing points, ensuring the integrity required to maintain <5% RH from laboratory ambient temperatures, and ±0.5% RH uniformity across the chamber.

Portability

The HygroCal100 can optionally be fitted with a high capacity battery pack, which can power the generator and 7 sensors under test for up to 8 hours. The unit can also run from mains power while charging the battery.

An optional hard carry case is also available with the unit. This has space for the HygroCal100 itself, in addition to the battery charger, spare water and desiccant.

Integrate Your Own Reference

The HygroCal interface allows you to assign any hygrometer with an analog output as your reference device, giving you the flexibility to incorporate your traceable reference in your validation routine.

Automated Validation

The HygroCal100’s advanced UI allows you to define your own calibration procedure, point-by-point, assigning times to each condition to allow your probes under test to stabilize. The system always waits until the conditions in the chamber are completely stable before beginning the check.

Correct Chamber Control To Your Own Reference

To ensure continual long term stability of the chamber, the in-built calibration correction system can compare the readings of your traceable reference to a range of pre-set generated conditions – making adjustments to the control sensor to ensure that your set point always matches your own reference.
Technology: Divided Flow Mixing with HS3 Control

The simple, low maintenance system can transition between and stabilise on constant humidity conditions very quickly. It features a reservoir for saturation and a reservoir for desiccation. By driving ambient air through either one of these reservoirs and into the chamber, the conditions inside can be quickly altered.

Reliable, Stable Control

The HygroSmart 3 sensor utilizes the new H8000 capacitive polymer element and high resolution electronic hybrid technology, to give outstanding accuracy across the complete RH range, and stability throughout a wide temperature spectrum.

• Interchangeable sensor accuracy ±0.8% RH
• ±1% RH long-term stability per year

The sensor stores its own unique calibration data within its integral electronics, ensuring 100% field interchangeability.

Calibration Kits

The HygroCal100 can be supplied with several different combination packages, allowing you to begin making traceable calibration checks immediately.

MDM25

The MDM25 is a portable, battery-operated hand-held hygrometer, which makes an ideal portable reference for use with the HygroCal100. The MDM25 is supplied with a standard probe, which is calibrated traceable to national standards. Also included is a port adaptor, to fit this probe, in the HygroCal100 chamber.

Optidew Vision

The Optidew Vision is a fundamental chilled mirror hygrometer, its high accuracy and repeatability make it the choice for applications where traceability and precision measurements are key. This kit includes port adaptors to fit both the dew-point and temperature sensors into the chamber.
Technical Specifications

<table>
<thead>
<tr>
<th>Chamber</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation range</td>
<td>5 to 95% RH</td>
</tr>
<tr>
<td>RH stability</td>
<td>±0.5%</td>
</tr>
<tr>
<td>RH uniformity</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Stabilization time</td>
<td>Typically <5 min for full stability from step changes of 10% RH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Probe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RH accuracy</td>
<td>±0.8%</td>
</tr>
<tr>
<td>Temperature accuracy</td>
<td>±0.2°C</td>
</tr>
<tr>
<td>Long term stability</td>
<td>±1% per year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>User interface</td>
<td>4.3" color LCD with touchscreen</td>
</tr>
<tr>
<td>Interface with probes</td>
<td>24V excitation voltage, accepts signals: 0–20 mA, 4–20 mA, 0–1 V, 0–5 V, 0–10 V</td>
</tr>
<tr>
<td>Measurement units</td>
<td>%RH, temperature in °C, °F</td>
</tr>
<tr>
<td>Displayed resolution</td>
<td>0.1</td>
</tr>
<tr>
<td>Data logging</td>
<td>2Gb internal memory available for log files; or 10.6yrs storage at 5s intervals</td>
</tr>
<tr>
<td>Battery (Optional)</td>
<td>1500 mAh</td>
</tr>
<tr>
<td>Power supply</td>
<td>24 V DC (100 to 240 V AC, 50/60 Hz adaptor included)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe ports</td>
<td>8 - port adaptors to accommodate probes of diameters: 12mm, 13.5mm, 14mm, 15mm, 18.5mm, 19mm, 24mm, 25mm</td>
</tr>
<tr>
<td>Chamber volume</td>
<td>Approx 1050cm³</td>
</tr>
<tr>
<td>Maximum probe insertion depth</td>
<td>60mm</td>
</tr>
<tr>
<td>Desiccant reservoir capacity</td>
<td>25cm³</td>
</tr>
<tr>
<td>Saturator reservoir capacity</td>
<td>25ml</td>
</tr>
<tr>
<td>Environmental conditions</td>
<td>+5 to +40°C</td>
</tr>
<tr>
<td>Dimensions</td>
<td>100 x 250 x 300mm (h x w x d)</td>
</tr>
<tr>
<td>Weight</td>
<td>3.2kg</td>
</tr>
</tbody>
</table>

HS This HygroSmart symbol is used to identify any Michell RH product which has an interchangeable sensor.

Related Products

- OptiCal Humidity Calibrator
- HG10 Humidity Calibrator
- MDM25 Hand-Held Hygrometer
- Optidew Vision Dew-Point Hygrometer
- S8000 Remote High Precision Hygrometer

Michell Instruments Ltd 48 Lancaster Way Business Park, Ely, Cambridgeshire, CB6 3NW
Tel: +44 (0) 1353 658000, Fax: +44 (0) 1353 658199, Email: uk.info@michell.com, Web: www.michell.com/uk

Michell Instruments adopts a continuous development programme which sometimes necessitates specification changes without notice.

Issue no: HygroCal100_97502_V1_UK_Datasheet_1015

© 2015 Michell Instruments
MDM50
Portable Hygrometer

A compact and easy to use portable hygrometer with fast response, integrated sampling system and traceability to National Standards.

Highlights
- Rapid spot-check measurements to -50°Cdp
- T95 to -35°C dew point in <10 minutes
- Simple operation
- Integral sampling system
- Industrial case
- $\pm 2^\circ$Cdp accuracy
- 9-point traceable calibration
- 16 hours of operation between charges

Applications
- Compressed air dryers
- Medical gases
- Plastic molding dryers
- Instrument air
- Ozone generators

www.michell.com
MDM50
Hygrometer

Affordable, Simple Dew-Point Measurement

The MDM50 Hygrometer has been designed to make spot checks of the dew point in air and gases as simple and fast as possible. This completely self-contained instrument weighs just 4kg and is delivered ready to use. Simply connect your sample gas to the Quick Connect (or optional Swagelok®) fittings, turn on the instrument and it will automatically begin to measure the dew point of the applied sample.

Intelligent and Interchangeable Sensor Technology

The MDM50 uses Michell’s advanced polymer moisture sensing technology. The sensor is coupled with the latest microprocessor-based measurement circuitry to produce a fully calibrated and interchangeable sensor transmitter module. All calibration data is stored in flash memory, so on-site sensor exchange for calibration or service can be performed quickly, even by untrained personnel.

Fully Integrated Sampling System

The MDM50 is unique among portable hygrometers. Michell Instruments has built into the standard design, a complete sampling system that easily allows you to measure the dew point of any air or gas line, at up to 2 Mpa (20 barg) pressure. The two interchangeable inlet/outlet fittings allow you to choose between dew point measured at atmospheric, or at line pressure, by simply swapping the position of the fittings. An integrated filter housing uses standard filter cartridges and provides 99.5% protection against particles down to 0.3µm. Optionally, Swagelok® tube couplings can be specified to allow operation of the unit at up to 30 Mpa (300 barg).

Measurement Under Your Control

The hygrometer features an extremely clear and bright 0.5” red LED display making it easy to determine the dew point of your process even in dim conditions or direct sunlight. Michell also provides a 4–20 mA analog output for connection to a chart recorder, data-logger or computer system, so dew-point trends can be analyzed over time.

Designed For Use In The Field

A field instrument must be easy to carry and use. As its name suggests, the MDM50 has been designed to be perfectly transportable. It is small with an ergonomic carrying handle and weighs only 4kg. The case of the hygrometer provides NEMA 6 protection and the outer case is covered by a lifetime guarantee, so can be returned to the factory for repair or replacement, free of charge.

Long Battery Life

The MDM50 uses a rechargeable NiMH battery pack and is delivered complete with a universal battery charger that fits neatly into the instrument lid. It will operate for up to sixteen hours on a full charge. A battery charge indicator on the instrument front panel warns when the battery is low.

Reproducibility and Calibration Integrity

The MDM50 polymer moisture sensors are subject to a 9-point calibration, where their performance is characterized against a fundamental reference hygrometer. This process, and subsequent quality testing, ensures that all sensors behave optimally before they are used in the field.

Traceable Calibration

Each MDM50 is supplied with a calibration certificate traceable to national standards (NPL & NIST) from Michell Instruments’ accredited laboratory.
Technology:
Polymer Sensor

A capacitive humidity sensor works like a plate capacitor. The lower electrode is deposited on a ceramic substrate. A thin polymer hygroscopic layer acts as the dielectric, and on top of this is the upper plate, which acts as the second electrode but which also allows water vapour to pass through it, into the polymer.

The dielectric strength of the polymer is proportional to the water vapour content. In turn the dielectric strength affects the capacitance, which is measured and processed to give a relative humidity measurement. By combining this figure with a measurement of temperature, a dew point or absolute humidity value can be calculated.

Advantages of Polymer

- Very fast response
- Long-term stability
- Resistant to most chemicals
- Not permanently damaged by liquids
- Insensitive to contamination by particulates
Technical Specifications

Performance
- **Measurement technology**: Polymer Capacitive
- **Measurement range**: −50 to +20°Cdp
- **Accuracy**: ±2°Cdp
- **Run time**: 12 to 16 hours
- **Charge time**: 16 hours for maximum charge
- **Flow rate**: 1 to 5 Nl/min

Electrical Input/Output
- **Output**: 4–20 mA current maximum load resistance 400 Ω
- **Power supply**: Rechargeable NiMH battery pack, charger included

Operating Conditions
- **Operating temperature**: −20 to +50°C
- **Storage temperature**: −40 to +75°C
- **Operating pressure**
 - **Low pressure version**: Up to 2 MPa (20 barg / 290 psig)
 - **High pressure version**: Up to 30 MPa (300 barg / 4350 psig)

Mechanical Specifications
- **Display**: Flush mounted 3.5 digit red LED
- **Case**: Yellow propylene with charger, sample tubing and output connector stored in the lid
- **Weight**: 4kg total weight
- **Enclosure rating**: Case closed NEMA Type 6
- **Sample connections**: Optional: Legris pneumatic fittings
 - 6mm Swagelok® tube fittings
 - 1/4" Swagelok® tube fittings
- **Sample block**: Stainless steel, fully self-contained sample system with fixed orifice ports for flow control/pressure or atmospheric measurement and built-in filtration using a standard drop-in cartridge
- **Filter cartridge**: Removes 99.5% of particles ≥0.3µm supplied with cartridge installed. Spare cartridges are available (part no.: SSF-FP-10PK)
- **Sample tubing**
 - **Low pressure version**: 2m of 6mm O/D PTFE supplied
 - **High pressure version**: Metering valve and port adaptor

![Diagram of instrument](image_url)

Dimensions
- **Storage pocket for tubing and spare filters**
- **Power switch, fuse, battery indicator and current output socket**
- **6/8 (NEMA 6P) polypylene case**
- **Gas input ports with interchangeable fittings**
- **3/4" BSPT thread**
- **Particulate filter cartridge**
MDM300 & MDM300 I.S.
Advanced Dew-Point Hygrometer

A high-speed portable dew-point hygrometer, offering rapid spot-check measurements of dew point or moisture content in many applications, including compressed air, natural gas and high-voltage switchgear quench gas. This lightweight, ATEX, IECEX, FM, CSA, GOST and INMETRO certified product allows more measurements per working hour than any other comparable product. A hard-wearing but ergonomic case and an easy-to-use interface allows comfortable and practical operation in the toughest industrial environments.

Highlights
- Repeatedly fast measurements at low pressure from less than 15 minutes for T95 to -60°C
- Higher pressure measurements possible up to 350 barg
- Long battery life: up to 48 hours of typical use between charges
- Intuitive application kits allow quick and straightforward connection to your sample point
- Durable, yet easy to handle and operate: designed for use in industrial environments
- 4-20 mA external device input for transmitter calibration and validation
- Lightweight: less than 1.5kg
- 13 point traceable calibration certificate

Applications
- Dew point in natural gas processing and pipelines
- Monitoring of desiccant dryers for compressed air or plastic moulding equipment
- Moisture measurement in high-voltage switchgear quench gas
- Moisture measurement in petrochemical refineries
- Industrial gas production and transportation
- Medical gas quality
- Dew-point measurement in metallurgical applications
- And many more...

www.michell.com
MDM300 & MDM300 I.S.

Ideal for spot checks of dew point or moisture content, the MDM300 & MDM300 I.S. include all the features needed for efficient work. An extremely fast response and accurate, stable measurement are complemented by an instrument which is easy to use, has data-logging and built in sampling components as standard. The instrument can be supplied with a range of accessories including sampling systems and a professional carry case. For use in hazardous areas, the MDM300 I.S. has ATEX certification to Ex II 1 G Ex ia IIC T4 Tamb -20°C to +60°C; FM, CSA, IECEx, GOST-R, GOST-K and INMETRO standards. The MDM300 and MDM300 I.S. are both IP66/NEMA 4 rated, and therefore suitable for demanding outdoor applications.

Features
The MDM300 series can provide measurement to -60°Cdp in gases at atmospheric pressure in less than 15 minutes (30 minutes to -60°Cdp for MDM300 I.S.). This, combined with no required waiting time between measurements, allows the user to take many readings per day, increasing efficiency and reducing costs when compared to other instruments on the market.

Simple to use
The rugged but ergonomic design of the MDM300 series combines industrial durability with comfortable one or two-handed operation. The intuitive menu system and large, easy-to-press buttons enable the user to easily configure the instrument to display the parameters they require, even with gloved hands.

Best accuracy
Best-in-class accuracy of 1°Cdp (from -60 to +20°Cdp) gives the user improved measurements. Every instrument undergoes a 13 point calibration over a period of 10 days and all calibration certificates are traceable to national standards via the NPL (UK) and NIST (USA).

External sensor connection via 4-20 mA loop-powered input
External sensors for the measurement of dew point, pressure or temperature can easily be connected to the MDM300 series, and their readings displayed on the screen. These inputs can also be used to augment the measurement, such as by providing live pressure compensation.

In addition, the MDM300 series can be used to check and recalibrate Michell Easidew dew-point transmitters, affording the user the benefit of a verification without the associated downtime.

Michell can supply a Remote Sensor Interface with the MDM300 I.S., allowing connection to the Easidew TX I.S. or Easidew PRO I.S. dew-point transmitters.

Versatile sampling
The MDM300 series offers versatile sampling arrangements ranging from simple fixed orifices for low pressure measurement to configurable high-pressure sampling systems up to 350 barg. A number of application kits are available providing out of the box sampling systems specifically for the most popular applications. Please contact Michell Instruments for further details.

Measurement in hazardous areas
The MDM300 I.S. has been certified by ATEX & IECEx, FM, CSA and GOST for use in hazardous areas. This is the perfect portable instrument for use in natural gas plants, petrochemical refineries, offshore platforms and a range of other hazardous areas.

www.michell.com
Sensor Technology

Ceramic Impedance Sensor

The MDM300 uses Michell’s highly developed ceramic impedance sensor, which is constructed using state-of-the-art thin and thick film techniques. Operation of the sensor depends upon the adsorption of water vapour into a porous non-conducting ‘sandwich’ between two conductive layers built on top of a base ceramic substrate. The active sensor layer is very thin – less than one micron and the porous upper layer that allows transmission of water vapour into the sensor is less than one nano-metre.

The resulting sensor responds rapidly to changes in moisture – both in measuring humidity and also when being dried. It is very rugged and gives 1°C dew-point accuracy coupled with excellent long-term reliability and stability.

Dimensions

![Sensor Diagram]

218mm (8.56")

90mm (3.54")

170mm (6.69")
Technical Specifications

### Product	MDM300	MDM300 I.S.
Performance
Measurement technology | Michell ceramic sensor |
Accuracy | ±1°C from -60 to +20°C dew point | ±2°C from -100 to +60°C dew point | ±0.2°C temperature
Calibrated range | Spot checks:
-70 to +20°C dew point | -100 to -70°C dew point |
Uncalibrated readings from | +20 to +30°C dew point |
Measurement units | °C, °F; K dew point; & gas temperature ppm, ppmv, ppmw, % R/H, g/m³, g/kg | °C, °F; K dew point; & gas temperature ppm, ppmv, ppmw, g/kg; for air: N₂, H₂, CO, CO₂, SF₆ |
Resolution (display) | 0.1 for all dew-point derived units and autorangeing where appropriate |
Resolution (measurement) | Better than 0.1°C dew point |
Typical response speed | T95 in ≤15 minutes to -60°C dew point | T95 in ≤30 minutes to -60°C dew point
Electrical Input/Output
Auxiliary inputs | 4-20 mA loop-powered external input selectable as either dew point, temperature or pressure | Connection to Michell Easidew TX LS or Easidew PRO 1.2, via Remote Sensor Interface
Battery type | NiMH 4.8V |
Battery operating Life | Up to 48 hours of typical usage between charges | Up to 24 hours of typical usage between charges
Battery charger | Intelligent charger (supplied) | Intelligent charger (charger not certified for hazardous area use)
Operating Conditions
Operating pressure | 350 barg max |
Operating environment | Outdoors 0 to +100% RH condensing |
Operating temperature | -20 to +50°C |
Storage/transport temperature | -40 to +70°C |
Mechanical Specifications
Display | 8" LCD graphical display |
Enclosure type | Steel fibre-loaded high-impact polyamide 6 |
IP/NEMA rating | IP66/NEMA 4 |
Gas connections | 1/8" NPT female (other options available) |
Flow across sensor | 0.2 to 1.2 Nl/min | 0.2 to 0.5 Nl/min
Gas wetted materials | AISI 316L stainless steel | AISI 316L stainless steel, PTFE Seal, Borosilicate glass, ceramic
Outline dimensions | 218mm x 170mm x 90mm (d x w x h) |
Weight | 1.35kg | 1.5kg
General
Data logging | 8 megabytes, Log interval: 5 to 60 sec, Logs per log file: Up to 10,000 |
Communications | (Wireless) Bluetooth™ range up to 5m (version 2.0) |
User interface languages | English, French, German, Italian, Portuguese, Spanish
Certification Codes | CE | ATEX: II 1G Ex ia IIC T4 Ga (-20°C to +50°C)
IECEx: Ex ia IIC T4 Ga (-20°C to +50°C) | INMETRO: Ex ia IIC T4 Ga (-20°C to +50°C) | TC TR Ex: IEEx ia IIC T4 G4a
FM: Class I, Division 1, Groups A B C D, T4
CSA: Class I, Division 1, Groups A B C D, T4

Michell Instruments 48 Lancaster Way Business Park, Ely, Cambridgeshire, CB6 3NW
Tel: +44 1353 658000, Fax: +44 1353 658199, Email: info@michell.com, Web: www.michell.com

Michell Instruments adopts a continuous development programme which sometimes necessitates specification changes without notice.
Issue no: MDM300_97156_V8_UK_0516

© 2014 Michell Instruments
Optidew Vision
Optical Dew-Point Meter

A precision hygrometer, combining drift free measurement with the flexibility of a remote sensor. Ideal for laboratory and industrial measurements, or as a calibration reference.

Highlights
- Fundamental drift-free dew-point measurement
- Convenient, transportable package
- ±0.2°Cdp (±0.36°Fdp) accuracy; optional higher accuracy available
- High temperature sensor option to +130°C (+266°F)
- NEMA-12 bench-top housing
- Display and output of multiple engineering units
- High pressure sensor option to 25 MPa (250 barg / 3626 psig)
- Purpose-designed climatic chamber reference sensor option

Applications
- Metrology laboratories
- Compressed air
- Environmental chambers
- Pharmaceutical
- Frost protection of turbine blades
- Fuel cell research
- Engine testing – high performance to commercial vehicle engines
- Power generation
Optidew Vision
Optical Dew-Point Meter

The Optidew Vision precision dew-point meter is based on the proven, fundamental optical dew-point measurement principle, giving long-term drift-free performance. It offers a wide measurement range from the equivalent of <0.5% to 100% RH at ambient temperature (dew point range: –40 to +90°C (–40 to +194°F), and up to +130°C (+266°F) with high temperature option).

Robust Sensor Design

The Optidew Vision is supplied with remote dew-point and temperature sensors that can be mounted in a variety of ways to suit the application:

- Via a permanently installed sample port into which the remote sensor can be inserted or
- Via a sensor block immediately attached to the sensor around which the sample circulates or
- In an ambient environment where the sample is diffusing through the sensor

The dew-point sensor is available with single stage or dual stage peltier devices, giving an absolute depression from ambient temperatures of either 55 or 65°C respectively. The dual-stage peltier allows measurement of dew points as low as –40°C (–40°F).

A number of different corrosion resistant mirror and sensor housing materials are available, to withstand aggressive sample components in the harshest of applications.

Both high temperature (up to +130°C (+266°F)) and high pressure (up to 250 barg / 3626psig) sensor versions are available. To respond quickly to rapidly changing environmental conditions Michell can also offer a special climatic sensor with a low thermal mass, ideal for climatic chamber applications.

Michell's technical team are always available to advise on the most appropriate choices for your process.

Data Communication and Application Software

The instrument provides two linear 0/4–20 mA outputs and a choice of RS232 or RS485 serial communications, allowing configuration and monitoring by a suitable computer, data logger or other device. The comprehensive application software provides an interface to configure and control instrument functions, and enables all measured and calculated parameters to be graphed or logged over time. An adjustable isolated alarm contact allows the Optidew Vision to be used for direct process control.

Compact and Convenient Package

The smart bench-top enclosure for the Optidew Vision has a handle that doubles as a stand. An optional panel mounting kit is also available for 19" rack mounting. A bright and clear 2-line vacuum fluorescent display on the front panel enables the instrument parameters to be monitored even when not connected to the application software.

For the same great features of the Optidew Vision, in an industrial package, Michell also offers the Optidew, which is supplied in a rugged, wall mountable IP66 / NEMA 4 stainless steel enclosure.

As a Calibration Reference

The Optidew Vision is also an excellent entry level calibration reference, supplied as standard with a fully traceable in-house calibration or optional UKAS-certified calibration in our ISO17025 accredited laboratory. Its simple operation allows precision measurements to be made by an operator with the minimum of training. Simply connect the instrument, power it up and measurement will begin automatically.

Frost Assurance Technology (FAST)

Super-cooled water can exist at temperatures down to –30°C (–22°F), and when formed on the mirror of a chilled mirror hygrometer can introduce errors of up to 10% in reading. All Michell Chilled Mirror products feature FAST, the frost assurance technology that guarantees all dew-point measurements below 0°C (+32°F) are made over ice. The FAST system works by rapidly cooling the mirror until a film of ice has formed on the mirror of pre-determined thickness – once ice has been formed, control returns to the instrument and measurement can begin.

Measurement Reliability - DCC

Dynamic Contamination Control (DCC) ensures that measurement accuracy and stability are maintained even when contamination is present on the surface of the mirror.

During the DCC process the mirror is heated to approximately 20°C above the sensor temperature to remove the condensation which has formed during measurement. The surface finish of this mirror, with the contamination which remains, is used by the optics as a reference point for further measurements. This removes the effect of contamination on accuracy.

For further protection, sintered stainless steel, porous membrane or HDPE sensor guard options are available. Each guard can also be used as a velocity limiter in high flow direct insertion applications.
Technology:
Chilled Mirror

Michell's chilled mirror hygrometers are precision instruments for critical measurement and control applications. Chilled mirror sensors measure a primary characteristic of moisture – the temperature at which condensation forms on a surface. This means that chilled mirror instruments:

- Have no drift: the temperature at which condensation forms is measured directly so there are no calculated variables that could shift over time
- Are inherently repeatable, giving reliable results every time

The chilled mirror sensor consists of a temperature controlled mirror and an advanced optical detection system.

The gas sample is passed over the surface of the polished mirror contained within the open sensor housing. At a temperature dependent upon the moisture content in the gas, and the operating pressure, the moisture in the gas condenses out on the surface of the mirror.

The optical system is used to detect the point at which this occurs. This information is used to control the mirror temperature and maintain a constant thickness of the condensation layer on the mirror surface.

A beam of light from an LED (3) is focused on the mirror surface (2) with a fixed intensity. As condensation forms on the mirror surface, its surface tension causes a scattering effect, resulting in less light being reflected. The level of reflected light is measured by a photo detector (4) and compared against the level of light reflected by a clean mirror.

The signals from this optics system are used to precisely control the drive to a solid state thermoelectric cooler (TEC) (1) which heats or cools the mirror surface. The mirror surface is then controlled in an equilibrium state whereby evaporation and condensation are occurring at the same rate. In this condition the temperature of the mirror, measured by a PT100 platinum resistance thermometer (5), is equal to the dew-point temperature of the gas.

Our chilled mirror instruments prove their reliability on a daily basis in our production processes and service centres, as well as in our UKAS-accredited calibration laboratory.
Technical Specifications

Performance

<table>
<thead>
<tr>
<th>Measurement accuracy*</th>
<th>±0.2°C (±0.36°Fdp), ±0.15°C (±0.27°Fdp) accuracy optional, ±0.1°C (±0.18°F) temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement units</td>
<td>°C, °F dew point; %RH; °C, °F temperature; g/m³; g/kg; (a_{w}); Δ (t – t dew point)</td>
</tr>
<tr>
<td>Response speed</td>
<td>1°C/sec (1.8°F/sec) plus settling time (dew point dependant)</td>
</tr>
<tr>
<td>Power supply</td>
<td>90 to 264 V AC or 127 to 370 V DC, 47 to 440 Hz, 20 W max, internally fused, 4A quick blow</td>
</tr>
</tbody>
</table>

Dew-Point Sensor

<table>
<thead>
<tr>
<th>Sensor</th>
<th>1-Stage</th>
<th>2-Stage</th>
<th>High Temperature PEEK</th>
<th>Climatic or Aluminum head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dew-point range</td>
<td>–30°C @ sensor temperature of +20°C +90°C @ sensor temperature of +90°C</td>
<td>–40°C @ sensor temperature of +20°C +90°C @ sensor temperature of +90°C</td>
<td>–40°C @ sensor temperature of +20°C +130°C @ sensor temperature of +130°C</td>
<td>–10°C @ sensor temperature of +20°C +130°C @ sensor temperature of +130°C</td>
</tr>
<tr>
<td>Temperature range</td>
<td>–40 to +90°C (–40 to +194°F)</td>
<td>–40 to +90°C (–40 to +194°F)</td>
<td>–40 to +130°C (–40 to +266°F)</td>
<td>–40 to +130°C (–40 to +266°F)</td>
</tr>
<tr>
<td>% RH range</td>
<td><2 to 100%</td>
<td><0.5 to 100%</td>
<td><0.5 to 100%</td>
<td>10 to 100%</td>
</tr>
<tr>
<td>Min measured dew point @ +20°C</td>
<td>–30°C (–22°F)</td>
<td>–40°C (–40°F)</td>
<td>–40°C (–40°F)</td>
<td>–10°C (+14°F)</td>
</tr>
</tbody>
</table>

Mirror material options	Gold plated copper (standard), gold stud, 316 stainless steel stud**, platinum stud**
Sensor body material options	Acetal (standard), high temperature PEEK, 316 stainless steel**, anodized aluminum**
Temperature measurement	4 wire Pt100, 1/3 DIN class B
Sample flow	0.1 to 2 Nl/min (0.2 to 4 scfh) (in sampling block)
Maximum velocity	10 m/sec direct insertion, 30 m/sec with sintered guard
Pressure	**Standard unit**: 2 Mpa / 20 barg (300 psig) (max), ingress protection: IP66
	High Pressure version: 25 Mpa / 250 barg (3626 psig) (max), ingress protection: IP65
Sensor cable	**Standard cable**: PVC insulator material, +70°C (+158°F) max temperature
	High temperature cable: Silicone insulator material, +180°C (+356°F) max temperature
Cable length	2m (6.56’); 50m (164’); up to 250m (820’) on special request

Remote PRT

Temperature measurement	4 wire Pt100, 1/10 DIN class B
Remote PRT cable	**Standard cable**: PVC insulator material, +70°C (+158°F) max temperature
	High temperature cable: PTFE insulator material, +230°C (+462°F) max temperature
Cable length	2m (6.56’); 50m (164’); max; up to 250m (820’) on special request

Transmitter Electronics

Resolution	0.1 for °C, °F and %RH, 0.01 for g/m³ and g/kg
Outputs	**Analog**: 4–20 mA or 0–20 mA over user-settable output, Accuracy: ±0.2°C (±3.6°F); 500 Ω maximum load resistance
	Digital: RS232 @ 9600 baud rate
	Alarm: Volt free contact, max 2 A @ 30 V DC, 0.5 A @ 120 V AC
Status LEDs	DCC/Alarm Status
Operating temperature	–20 to +50°C (–4 to +122°F) ambient
Environmental conditions	Up to 98% RH non-condensing
Enclosure	Standing case with carry handle, panel mounting kit optional
Ingress protection	IP54 (NEMA 2)
Cable pack	Mains, RS232 cable and output connector

General

| Calibration | 4-point traceable in-house calibration as standard, UKAS accredited calibrations optional —— please consult Michell |

*Measurement accuracy means maximum deviation between instrument under test and corrected reference. To this must be added the uncertainties associated with the calibration system and the environmental conditions during testing or subsequent use.

**Recommended for special applications only, consult Michell Instruments before ordering.
Chilled Mirror Instruments

Michell Instruments adopts a continuous development programme which sometimes necessitates specification changes without notice.

Issue no: Optidew Vision_97144_V6_UK_1015

© 2015 Michell Instruments

Michell Instruments Ltd 48 Lancaster Way Business Park, Ely, Cambridgeshire, CB6 3NW
Tel: +44 (0) 1353 658000, Fax: +44 (0) 1353 658199, Email: uk.info@michell.com, Web: www.michell.com/uk
S8000 Remote
High Precision Chilled Mirror Hygrometer

A hygrometer offering a combination of market-leading ±0.1°C accuracy with the flexibility of a remote sensor, allowing for straightforward installation and precision monitoring of environmental moisture. This highly sensitive, adaptable instrument can provide extremely accurate measurements in situ in the area of interest, or in an industrial process.

Highlights
- Fundamental, accurate and drift-free measurement
- Remote sensor
- Open design allows remote sensor to be mounted into a sample flow or simply placed in an environment to be monitored
- -40 to +90°C dew-point range with ±0.1°C accuracy
- Data logging to USB or SD card
- ‘FAST’ guarantees frost formation below 0°C
- Sensor operates in pressures up to 20 barg

Applications
- Engine test cell monitoring – from commercial vehicle to high performance engines
- Environmental chamber verification for:
 - Component testing
 - Corrosion testing
 - Pharmaceutical validation
- Precision HVAC control
- Lithium Ion battery manufacture
Chilled Mirror Instruments

S8000 Remote
Precision Optical Dew-point Hygrometer

Setting the Standard
The S8000 Remote chilled-mirror sensor directly measures the formation of condensation, giving long-term, drift-free readings of dew-point and relative humidity. It offers a wide measurement range from the equivalent of <0.5 to 100% RH (dew point range: -40 to +90°C) at temperatures up to +90°C.

Precision Measurements
The S8000 Remote features a new sensor design, incorporating a high precision 1/10DIN PT100 to provide ±0.1°C accuracy of dew-point measurement. Combined with the ±0.1°C accuracy temperature measurement sensor, the RH measurement accuracy of the S8000 Remote is better than other products currently available on the market.

To further improve the accuracy of pressure-derived calculated values an optional external pressure transducer can be supplied, which provides real-time pressure compensation for these parameters. This allows for continued measurement stability even during sample pressure fluctuations.

Data Communication and Application Software
The instrument provides three user-configurable analog outputs and MODBUS RTU communications, allowing the instrument to be monitored by a suitable computer, data logger, PLC system or other device. A pair of adjustable isolated alarm contacts allows the S8000 Remote to be used for direct process control.

Flexible application software is provided with the S8000 Remote, allowing the operator to control all the functions of the instrument directly from a PC. An expanded parameter display simultaneously shows all of the measured and calculated parameters and a customizable graph is provided to display any combination of parameters against a time base. Data logging functionality is provided, allowing log files to be created and saved directly on the host PC.

High Contrast Display with Built-in Data Logging
A clear, bright and highly visible LCD display is capable of showing any three user-selectable parameters in large clear text. The display also features a stability graph and displays the operational status of the unit. An easy to use menu system enables control and configuration of the instrument using the front panel buttons.

A sophisticated built-in logging system provides the facility to log the values of all the instrument parameters at operator specified intervals. The log files are saved directly onto a removable SD memory card (supplied), allowing the logs to be easily transferred to a PC for analysis or correlation with test results.

Flexibility of Use & Simplicity of Installation
The remote sensor design eliminates the potential problems usually associated with building sampling systems. The open cell sensor can now be placed directly into the environment to be monitored and does not always need a complex and expensive sampling arrangement or pump to convey the gas to be measured to the instrument.

For more challenging applications, where direct insertion is not possible, the sensor can be mounted in a sample block and included in a sampling system. This means that the product can be used for a wide range of applications, and with trace heating - including those up to dew-point temperatures of +90°C.

Application: Climatic chamber monitoring
Technology: Chilled Mirror

Michell’s chilled mirror hygrometers are precision instruments for critical measurement and control applications. Chilled mirror sensors measure a primary characteristic of moisture—the temperature at which condensation forms on a surface.

This means that chilled mirror instruments:

- Have no drift: the temperature at which condensation forms is measured directly so there are no calculated variables that could shift over time
- Are inherently repeatable, giving reliable results every time

The chilled mirror sensor consists of a temperature controlled mirror and an advanced optical detection system.

The gas sample is passed over the surface of the polished mirror contained within the open sensor housing. At a temperature dependent upon the moisture content in the gas, and the operating pressure, the moisture in the gas condenses out on the surface of the mirror.

The optical system is used to detect the point at which this occurs. This information is used to control the mirror temperature and maintain a constant thickness of the condensation layer on the mirror surface.

A beam of light from an LED (3) is focused on the mirror surface (2) with a fixed intensity. As condensation forms on the mirror surface, its surface tension causes a scattering effect, resulting in less light being reflected. The level of reflected light is measured by a photo detector (4) and compared against the level of light reflected by a clean mirror.

The signals from this optics system are used to precisely control the drive to a solid state thermoelectric cooler (TEC) (1) which heats or cools the mirror surface. The mirror surface is then controlled in an equilibrium state whereby evaporation and condensation are occurring at the same rate. In this condition the temperature of the mirror, measured by a PT100 platinum resistance thermometer (5), is equal to the dew-point temperature of the gas.

Our chilled mirror instruments prove their reliability on a daily basis in our production processes and service centres, as well as in our UKAS-accredited calibration laboratory.
Technical Specifications

Dew-Point Sensor Performance

<table>
<thead>
<tr>
<th>Measurement technology</th>
<th>Chilled Mirror</th>
<th>Acetal</th>
<th>Aluminium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor type</td>
<td>Acetal Aluminium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dew-point range</td>
<td>-40°C @ sensor temp of +20°C to +90°C @ sensor temp of +90°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-20°C @ sensor temp of +20°C to +90°C @ sensor temp of +90°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40°C to +90°C (-40°F to +194°F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% RH range</td>
<td>< 0.5-100%</td>
<td>< 4.5-100%</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.1°C (±0.18°F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response speed</td>
<td>1°C/sec (1.8°F/sec) plus settling time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproducibility</td>
<td>±0.05°C (±0.09°F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating pressure</td>
<td>0 to 20 barg (0 to 290 psig)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remote PRT

Temperature measurement	4 wire Pt100, 1/10 DIN class B
Accuracy	±0.1°C (±0.18°F)
Cable length	2m (6.6ft) (250m (820ft) max)

Optional Remote Pressure Sensor

Measurement range	0 to 25 bara (0 to 377 psia)
Accuracy	0.25% Full Scale
Measurement units	psia, bara, KPa or MPag
Pressure transducer	1/8" NPT

Monitor

- **Resolution**: User-selectable to 0.001 dependant on parameter
- **Measurement units**: °C and °F for dew point and temperature, %RH, g/m³, g/kg, ppm, ppb, ppmv, (SF₆), for calculated humidities
- **Outputs**:
 - **Analog**: 3 channels, user selectable 4-20 mA, 0-20 mA or 0-1 V
 - **Digital Alarm**: PC Communications using Modbus RTU over USB
 - Two volt free changeover contacts, one process alarm, one fault alarm; 1 A @ 30 V DC
- **HMI**: High definition, blue LCD
- **Data logging**: SD Card (512M supplied) and USB interface SD Card (FAT-16) - 2Gb max. that allows 24 million logs or 560 days, logging at 2 second intervals
- **Environmental conditions**: -20 to +50°C (-4 to +122°F)
- **Power Supply**: 85 to 264 V AC, 47/63 Hz
- **Power Consumption**: 100 VA

Mechanical Specifications

Dimensions (instrument)	180 x 400 x 320mm (7.1 x 15.7 x 12.5")
Dimensions (sensor)	ø45 x 128mm with M36 x 1.5-6g mounting thread
Weight	7.9kg (17.41lbs)
Cable lengths	2, 5 or 10m (6.6, 16.4 or 32.8ft)

General

- **Storage temperature**: -40 to +60°C (-40 to +140°F)
- **Detection system**: Single optics detection system with auto adjustment
- **Calibration**: 4-point traceable in-house calibration as standard; UKAS accredited calibrations optional - please consult Michell Instruments

Dimensions

[Diagram of the S8000 Remote Precision Dewpoint meter]

Michell Instruments

48 Lancaster Way Business Park, Ely, Cambridgeshire, CB6 3NW

Tel: +44 1353 658000, Fax: +44 1353 658199, Email: info@michell.com, Web: www.michell.com/uk

Michell Instruments adopts a continuous development programme which sometimes necessitates specification changes without notice.

Issue no: S8000 remote_97307_V3_UK_0813

© 2013 Michell Instruments